About the Project

Poisson equation

AdvancedHelp

(0.001 seconds)

1—10 of 11 matching pages

1: 14.31 Other Applications
§14.31(i) Toroidal Functions
Applications of toroidal functions include expansion of vacuum magnetic fields in stellarators and tokamaks (van Milligen and López Fraguas (1994)), analytic solutions of Poisson’s equation in channel-like geometries (Hoyles et al. (1998)), and Dirichlet problems with toroidal symmetry (Gil et al. (2000)). …
2: 19.18 Derivatives and Differential Equations
and also a system of n ( n 1 ) / 2 Euler–Poisson differential equations (of which only n 1 are independent): … The next four differential equations apply to the complete case of R F and R G in the form R a ( 1 2 , 1 2 ; z 1 , z 2 ) (see (19.16.20) and (19.16.23)). The function w = R a ( 1 2 , 1 2 ; x + y , x y ) satisfies an Euler–Poisson–Darboux equation: …
3: Bibliography T
  • C. A. Tracy and H. Widom (1997) On exact solutions to the cylindrical Poisson-Boltzmann equation with applications to polyelectrolytes. Phys. A 244 (1-4), pp. 402–413.
  • 4: Bibliography H
  • M. Hoyles, S. Kuyucak, and S. Chung (1998) Solutions of Poisson’s equation in channel-like geometries. Comput. Phys. Comm. 115 (1), pp. 45–68.
  • 5: 1.8 Fourier Series
    1.8.5 1 π π π | f ( x ) | 2 d x = 1 2 | a 0 | 2 + n = 1 ( | a n | 2 + | b n | 2 ) ,
    1.8.6 1 2 π π π | f ( x ) | 2 d x = n = | c n | 2 ,
    §1.8(iv) Poisson’s Summation Formula
    1.8.13Moved to (1.8.6_1).
    1.8.16 n = e ( n + x ) 2 ω = π ω ( 1 + 2 n = 1 e n 2 π 2 / ω cos ( 2 n π x ) ) , ω > 0 .
    6: Errata
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • 7: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • S. H. Khamis (1965) Tables of the Incomplete Gamma Function Ratio: The Chi-square Integral, the Poisson Distribution. Justus von Liebig Verlag, Darmstadt (German, English).
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.
  • M. D. Kruskal (1974) The Korteweg-de Vries Equation and Related Evolution Equations. In Nonlinear Wave Motion (Proc. AMS-SIAM Summer Sem., Clarkson Coll. Tech., Potsdam, N.Y., 1972), A. C. Newell (Ed.), Lectures in Appl. Math., Vol. 15, pp. 61–83.
  • 8: 18.12 Generating Functions
    18.12.2 𝐅 1 0 ( α + 1 ; ( x 1 ) z 2 ) 𝐅 1 0 ( β + 1 ; ( x + 1 ) z 2 ) = ( 1 2 ( 1 x ) z ) 1 2 α J α ( 2 ( 1 x ) z ) ( 1 2 ( 1 + x ) z ) 1 2 β I β ( 2 ( 1 + x ) z ) = n = 0 P n ( α , β ) ( x ) Γ ( n + α + 1 ) Γ ( n + β + 1 ) z n ,
    18.12.2_5 F 1 2 ( γ , α + β + 1 γ α + 1 ; 1 R z 2 ) F 1 2 ( γ , α + β + 1 γ β + 1 ; 1 R + z 2 ) = n = 0 ( γ ) n ( α + β + 1 γ ) n ( α + 1 ) n ( β + 1 ) n P n ( α , β ) ( x ) z n , R = 1 2 x z + z 2 , | z | < 1 ,
    18.12.3_5 1 + z ( 1 2 x z + z 2 ) β + 3 2 = n = 0 ( 2 β + 2 ) n ( β + 1 ) n P n ( β + 1 , β ) ( x ) z n , | z | < 1 ,
    18.12.17 1 + 2 x z + 4 z 2 ( 1 + 4 z 2 ) 3 2 exp ( 4 x 2 z 2 1 + 4 z 2 ) = n = 0 H n ( x ) n / 2 ! z n , | z | < 1 .
    See §18.18(vii) for Poisson kernels; these are special cases of bilateral generating functions.
    9: 1.14 Integral Transforms
    1.14.1 ( f ) ( x ) = f ( x ) = 1 2 π f ( t ) e i x t d t .
    1.14.7_5 F ( x ) G ( x ) ¯ d x = f ( t ) g ( t ) ¯ d t ,
    Poisson’s Summation Formula
    1.14.9 c ( f ) ( x ) = c f ( x ) = 2 π 0 f ( t ) cos ( x t ) d t ,
    1.14.10 s ( f ) ( x ) = s f ( x ) = 2 π 0 f ( t ) sin ( x t ) d t .
    10: 20.11 Generalizations and Analogs
    This is the discrete analog of the Poisson identity (§1.8(iv)). … The first of equations (20.9.2) can also be written … The importance of these combined theta functions is that sets of twelve equations for the theta functions often can be replaced by corresponding sets of three equations of the combined theta functions, plus permutation symmetry. Such sets of twelve equations include derivatives, differential equations, bisection relations, duplication relations, addition formulas (including new ones for theta functions), and pseudo-addition formulas. …