About the Project

Poincaré type

AdvancedHelp

(0.001 seconds)

1—10 of 13 matching pages

1: 12.9 Asymptotic Expansions for Large Variable
§12.9(i) Poincaré-Type Expansions
2: 13.7 Asymptotic Expansions for Large Argument
§13.7(i) Poincaré-Type Expansions
3: 5.11 Asymptotic Expansions
§5.11(i) Poincaré-Type Expansions
4: 2.1 Definitions and Elementary Properties
2.1.13 f ( x ) = s = 0 n 1 a s x s + O ( x n )
5: 9.7 Asymptotic Expansions
§9.7(ii) Poincaré-Type Expansions
6: 2.3 Integrals of a Real Variable
2.3.2 0 e x t q ( t ) d t s = 0 q ( s ) ( 0 ) x s + 1 , x + .
2.3.7 q ( t ) s = 0 a s t ( s + λ μ ) / μ , t 0 + ,
Other types of singular behavior in the integrand can be treated in an analogous manner. …
  • (b)

    As t a +

    2.3.14
    p ( t ) p ( a ) + s = 0 p s ( t a ) s + μ ,
    q ( t ) s = 0 q s ( t a ) s + λ 1 ,

    and the expansion for p ( t ) is differentiable. Again λ and μ are positive constants. Also p 0 > 0 (consistent with (a)).

  • 2.3.16 q ( t ) p ( t ) s = 0 b s v ( s + λ μ ) / μ , v 0 + ,
    7: 12.14 The Function W ( a , x )
    12.14.20 s 1 ( a , x ) 1 + d 2 1 ! 2 x 2 c 4 2 ! 2 2 x 4 d 6 3 ! 2 3 x 6 + c 8 4 ! 2 4 x 8 + ,
    12.14.23 s 1 ( a , x ) + i s 2 ( a , x ) r = 0 ( i ) r ( 1 2 + i a ) 2 r 2 r r ! x 2 r .
    Airy-type uniform asymptotic expansions can be used to include either one of the turning points ± 1 . …
    12.14.29 l ( μ ) 2 1 4 μ 1 2 s = 0 l s μ 4 s ,
    Airy-type Uniform Expansions
    8: 8.12 Uniform Asymptotic Expansions for Large Parameter
    8.12.7 S ( a , η ) e 1 2 a η 2 2 π a k = 0 c k ( η ) a k ,
    8.12.8 T ( a , η ) e 1 2 a η 2 2 π a k = 0 c k ( η ) ( a ) k ,
    8.12.15 Q ( a , a ) 1 2 + 1 2 π a k = 0 c k ( 0 ) a k , | ph a | π δ ,
    A different type of uniform expansion with coefficients that do not possess a removable singularity at z = a is given by …
    8.12.22 x ( a , 1 2 ) a 1 3 + 8 405 a 1 + 184 25515 a 2 + 2248 34 44525 a 3 + , a .
    9: 12.11 Zeros
    For large negative values of a the real zeros of U ( a , x ) , U ( a , x ) , V ( a , x ) , and V ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). …
    12.11.4 u a , s 2 1 2 μ ( p 0 ( α ) + p 1 ( α ) μ 4 + p 2 ( α ) μ 8 + ) ,
    12.11.7 u a , s 2 1 2 μ ( q 0 ( β ) + q 1 ( β ) μ 4 + q 2 ( β ) μ 8 + ) ,
    12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,
    10: 2.9 Difference Equations
    2.9.8 w j ( n ) ρ j n n α j s = 0 a s , j n s , n .
    2.9.9 w j ( n ) ρ n exp ( ( 1 ) j κ n ) n α s = 0 ( 1 ) j s c s n s / 2 ,
    2.9.12 w j ( n ) ρ n n α j s = 0 a s , j n s , n ,
    2.9.13 w 2 ( n ) ρ n n α 2 s = 0 s α 2 α 1 b s n s + c w 1 ( n ) ln n , n .
    §2.9(iii) Other Approximations