About the Project

Pochhammer symbol

AdvancedHelp

(0.008 seconds)

41—50 of 125 matching pages

41: 16.10 Expansions in Series of F q p Functions
β–Ί
16.10.1 F q + s p + r ⁑ ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ⁒ ΞΆ ) = k = 0 ( 𝐚 ) k ⁒ ( Ξ± ) k ⁒ ( Ξ² ) k ⁒ ( z ) k ( 𝐛 ) k ⁒ ( Ξ³ + k ) k ⁒ k ! ⁒ F q + 1 p + 2 ⁑ ( Ξ± + k , Ξ² + k , a 1 + k , , a p + k Ξ³ + 2 ⁒ k + 1 , b 1 + k , , b q + k ; z ) ⁒ F s + 2 r + 2 ⁑ ( k , Ξ³ + k , c 1 , , c r Ξ± , Ξ² , d 1 , , d s ; ΞΆ ) .
β–Ί
42: 26.8 Set Partitions: Stirling Numbers
β–Ί
26.8.7 k = 0 n s ⁑ ( n , k ) ⁒ x k = ( x n + 1 ) n ,
β–Ίwhere ( x ) n is the Pochhammer symbol: x ⁒ ( x + 1 ) ⁒ β‹― ⁒ ( x + n 1 ) . … β–Ί
26.8.10 k = 1 n S ⁑ ( n , k ) ⁒ ( x k + 1 ) k = x n ,
43: 31.11 Expansions in Series of Hypergeometric Functions
β–Ί
31.11.3_1 P j 5 = ( λ ) j ⁒ ( 1 γ + λ ) j ( 1 + λ μ ) 2 ⁒ j ⁒ z λ j ⁒ F 1 2 ⁑ ( λ + j , 1 γ + λ + j 1 + λ μ + 2 ⁒ j ; 1 z ) ,
β–Ί
31.11.3_2 P j 6 = ( λ μ ) 2 ⁒ j ( 1 μ ) j ⁒ ( γ μ ) j ⁒ z μ + j ⁒ F 1 2 ⁑ ( μ j , 1 γ + μ j 1 λ + μ 2 ⁒ j ; 1 z ) .
β–Ί
31.11.12 P j 5 = ( α ) j ⁒ ( 1 γ + α ) j ( 1 + α β + ϡ ) 2 ⁒ j ⁒ z α j ⁒ F 1 2 ⁑ ( α + j , 1 γ + α + j 1 + α β + ϡ + 2 ⁒ j ; 1 z ) ,
44: 15.8 Transformations of Variable
β–Ί
15.8.6 F ⁑ ( m , b c ; z ) = ( b ) m ( c ) m ⁒ ( z ) m ⁒ F ⁑ ( m , 1 c m 1 b m ; 1 z ) = ( b ) m ( c ) m ⁒ ( 1 z ) m ⁒ F ⁑ ( m , c b 1 b m ; 1 1 z ) ,
β–Ί
15.8.7 F ⁑ ( m , b c ; z ) = ( c b ) m ( c ) m ⁒ F ⁑ ( m , b b c m + 1 ; 1 z ) = ( c b ) m ( c ) m ⁒ z m ⁒ F ⁑ ( m , 1 c m b c m + 1 ; 1 1 z ) ,
β–Ί
15.8.9 𝐅 ⁑ ( a , a + m c ; z ) = ( 1 z ) a Ξ“ ⁑ ( a + m ) ⁒ Ξ“ ⁑ ( c a ) ⁒ k = 0 m 1 ( a ) k ⁒ ( c a m ) k ⁒ ( m k 1 ) ! k ! ⁒ ( z 1 ) k + ( 1 ) m ⁒ ( 1 z ) a m Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c a m ) ⁒ k = 0 ( a + m ) k ⁒ ( c a ) k k ! ⁒ ( k + m ) ! ⁒ ( 1 z ) k ⁒ ( ln ⁑ ( 1 z ) + ψ ⁑ ( k + 1 ) + ψ ⁑ ( k + m + 1 ) ψ ⁑ ( a + k + m ) ψ ⁑ ( c a + k ) ) , | z 1 | > 1 , | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.8.10 𝐅 ⁑ ( a , b a + b + m ; z ) = 1 Ξ“ ⁑ ( a + m ) ⁒ Ξ“ ⁑ ( b + m ) ⁒ k = 0 m 1 ( a ) k ⁒ ( b ) k ⁒ ( m k 1 ) ! k ! ⁒ ( z 1 ) k ( z 1 ) m Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ k = 0 ( a + m ) k ⁒ ( b + m ) k k ! ⁒ ( k + m ) ! ⁒ ( 1 z ) k ⁒ ( ln ⁑ ( 1 z ) ψ ⁑ ( k + 1 ) ψ ⁑ ( k + m + 1 ) + ψ ⁑ ( a + k + m ) + ψ ⁑ ( b + k + m ) ) , | z 1 | < 1 , | ph ⁑ ( 1 z ) | < Ο€ ,
β–Ί
15.8.11 𝐅 ⁑ ( a , b a + b + m ; z ) = z a Ξ“ ⁑ ( a + m ) ⁒ k = 0 m 1 ( a ) k ⁒ ( m k 1 ) ! k ! ⁒ Ξ“ ⁑ ( b + m k ) ⁒ ( 1 1 z ) k z a Ξ“ ⁑ ( a ) ⁒ k = 0 ( a + m ) k k ! ⁒ ( k + m ) ! ⁒ Ξ“ ⁑ ( b k ) ⁒ ( 1 ) k ⁒ ( 1 1 z ) k + m ⁒ ( ln ⁑ ( 1 z z ) ψ ⁑ ( k + 1 ) ψ ⁑ ( k + m + 1 ) + ψ ⁑ ( a + k + m ) + ψ ⁑ ( b k ) ) , ⁑ z > 1 2 , | ph ⁑ z | < Ο€ , | ph ⁑ ( 1 z ) | < Ο€ .
45: 13.2 Definitions and Basic Properties
β–Ί
13.2.3 𝐌 ⁑ ( a , b , z ) = s = 0 ( a ) s Ξ“ ⁑ ( b + s ) ⁒ s ! ⁒ z s ,
β–Ί
13.2.5 lim b n M ⁑ ( a , b , z ) Ξ“ ⁑ ( b ) = 𝐌 ⁑ ( a , n , z ) = ( a ) n + 1 ( n + 1 ) ! ⁒ z n + 1 ⁒ M ⁑ ( a + n + 1 , n + 2 , z ) .
β–Ί β–Ί
13.2.15 U ⁑ ( n + b 1 , b , z ) = ( 1 ) n ⁒ ( 2 b ) n ⁒ z 1 b + O ⁑ ( z 2 b ) .
β–Ί
13.2.27 k = 1 n n ! ⁒ ( k 1 ) ! ( n k ) ! ⁒ ( 1 a ) k ⁒ z k k = 0 ( a ) k ( n + 1 ) k ⁒ k ! ⁒ z k ⁒ ( ln ⁑ z + ψ ⁑ ( a + k ) ψ ⁑ ( 1 + k ) ψ ⁑ ( n + k + 1 ) ) ,
46: 13.15 Recurrence Relations and Derivatives
β–Ί
13.15.15 d n d z n ⁑ ( e 1 2 ⁒ z ⁒ z μ 1 2 ⁒ M κ , μ ⁑ ( z ) ) = ( 1 ) n ⁒ ( 2 ⁒ μ ) n ⁒ e 1 2 ⁒ z ⁒ z μ 1 2 ⁒ ( n + 1 ) ⁒ M κ 1 2 ⁒ n , μ 1 2 ⁒ n ⁑ ( z ) ,
β–Ί
13.15.16 d n d z n ⁑ ( e 1 2 ⁒ z ⁒ z μ 1 2 ⁒ M κ , μ ⁑ ( z ) ) = ( 1 2 + μ κ ) n ( 1 + 2 ⁒ μ ) n ⁒ e 1 2 ⁒ z ⁒ z μ 1 2 ⁒ ( n + 1 ) ⁒ M κ 1 2 ⁒ n , μ + 1 2 ⁒ n ⁑ ( z ) ,
β–Ί
13.15.17 ( z ⁒ d d z ⁑ z ) n ⁒ ( e 1 2 ⁒ z ⁒ z κ 1 ⁒ M κ , μ ⁑ ( z ) ) = ( 1 2 + μ κ ) n ⁒ e 1 2 ⁒ z ⁒ z n κ 1 ⁒ M κ n , μ ⁑ ( z ) ,
β–Ί
13.15.20 ( z ⁒ d d z ⁑ z ) n ⁒ ( e 1 2 ⁒ z ⁒ z κ 1 ⁒ M κ , μ ⁑ ( z ) ) = ( 1 2 + μ + κ ) n ⁒ e 1 2 ⁒ z ⁒ z κ + n 1 ⁒ M κ + n , μ ⁑ ( z ) .
β–Ί
13.15.23 ( z ⁒ d d z ⁑ z ) n ⁒ ( e 1 2 ⁒ z ⁒ z κ 1 ⁒ W κ , μ ⁑ ( z ) ) = ( 1 2 + μ κ ) n ⁒ ( 1 2 μ κ ) n ⁒ e 1 2 ⁒ z ⁒ z n κ 1 ⁒ W κ n , μ ⁑ ( z ) ,
47: 3.9 Acceleration of Convergence
β–Ί
3.9.16 c j , k , n = ( Ξ² + n + j ) k 1 ( Ξ² + n + k ) k 1 ,
β–Ί
3.9.17 c j , k , n = ( Ξ³ n j ) k 1 ( Ξ³ n k ) k 1 ,
β–Ίwhere ( a ) 0 = 1 and ( a ) j = a ⁒ ( a + 1 ) ⁒ β‹― ⁒ ( a + j 1 ) are Pochhammer symbols5.2(iii)), and the constants Ξ² and Ξ³ are chosen arbitrarily subject to certain conditions. …
48: 13.29 Methods of Computation
β–Ί
13.29.3 e 1 2 ⁒ z = s = 0 ( 2 ⁒ μ ) s ⁒ ( 1 2 + μ κ ) s ( 2 ⁒ μ ) 2 ⁒ s ⁒ s ! ⁒ ( z ) s ⁒ y ⁑ ( s ) ,
β–Ί β–Ί
13.29.7 z a = s = 0 ( a b + 1 ) s s ! ⁒ w ⁑ ( s ) ,
49: 18.12 Generating Functions
β–Ί
18.12.3 ( 1 + z ) α β 1 ⁒ F 1 2 ⁑ ( 1 2 ⁒ ( α + β + 1 ) , 1 2 ⁒ ( α + β + 2 ) β + 1 ; 2 ⁒ ( x + 1 ) ⁒ z ( 1 + z ) 2 ) = n = 0 ( α + β + 1 ) n ( β + 1 ) n ⁒ P n ( α , β ) ⁑ ( x ) ⁒ z n , | z | < 1 ,
β–Ί
18.12.3_5 1 + z ( 1 2 ⁒ x ⁒ z + z 2 ) β + 3 2 = n = 0 ( 2 ⁒ β + 2 ) n ( β + 1 ) n ⁒ P n ( β + 1 , β ) ⁑ ( x ) ⁒ z n , | z | < 1 ,
β–Ί
18.12.4 ( 1 2 ⁒ x ⁒ z + z 2 ) λ = n = 0 C n ( λ ) ⁑ ( x ) ⁒ z n = n = 0 ( 2 ⁒ λ ) n ( λ + 1 2 ) n ⁒ P n ( λ 1 2 , λ 1 2 ) ⁑ ( x ) ⁒ z n , | z | < 1 .
β–Ί
18.12.6 Ξ“ ⁑ ( Ξ» + 1 2 ) ⁒ e z ⁒ cos ⁑ ΞΈ ⁒ ( 1 2 ⁒ z ⁒ sin ⁑ ΞΈ ) 1 2 Ξ» ⁒ J Ξ» 1 2 ⁑ ( z ⁒ sin ⁑ ΞΈ ) = n = 0 C n ( Ξ» ) ⁑ ( cos ⁑ ΞΈ ) ( 2 ⁒ Ξ» ) n ⁒ z n , 0 ΞΈ Ο€ .
β–Ί
18.12.14 Ξ“ ⁑ ( Ξ± + 1 ) ⁒ ( x ⁒ z ) 1 2 ⁒ Ξ± ⁒ e z ⁒ J Ξ± ⁑ ( 2 ⁒ x ⁒ z ) = n = 0 L n ( Ξ± ) ⁑ ( x ) ( Ξ± + 1 ) n ⁒ z n .
50: 8.7 Series Expansions
β–Ί
8.7.2 Ξ³ ⁑ ( a , x + y ) Ξ³ ⁑ ( a , x ) = Ξ“ ⁑ ( a , x ) Ξ“ ⁑ ( a , x + y ) = e x ⁒ x a 1 ⁒ n = 0 ( 1 a ) n ( x ) n ⁒ ( 1 e y ⁒ e n ⁑ ( y ) ) , | y | < | x | .
β–Ί
8.7.5 Ξ³ ⁑ ( a , z ) = e 1 2 ⁒ z ⁒ n = 0 ( 1 a ) n Ξ“ ⁑ ( n + a + 1 ) ⁒ ( 2 ⁒ n + 1 ) ⁒ 𝗂 n ( 1 ) ⁑ ( 1 2 ⁒ z ) .