About the Project

Mobius inversion formulas

AdvancedHelp

(0.001 seconds)

21—30 of 341 matching pages

21: 4.47 Approximations
§4.47 Approximations
§4.47(i) Chebyshev-Series Expansions
Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . … Hart et al. (1968) give ln , exp , sin , cos , tan , cot , arcsin , arccos , arctan , sinh , cosh , tanh , arcsinh , arccosh . … Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
22: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.2: Principal values of arcsinh x and arccosh x . … Magnify
See accompanying text
Figure 4.29.4: Principal values of arctanh x and arccoth x . … Magnify
§4.29(ii) Complex Arguments
The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
23: 19.11 Addition Theorems
§19.11(i) General Formulas
19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
§19.11(iii) Duplication Formulas
24: 4.1 Special Notation
The main purpose of the present chapter is to extend these definitions and properties to complex arguments z . The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. Sometimes in the literature the meanings of ln and Ln are interchanged; similarly for arcsin z and Arcsin z , etc. … sin 1 z for arcsin z and Sin 1 z for Arcsin z .
25: 20.11 Generalizations and Analogs
If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): … This is Jacobi’s inversion problem of §20.9(ii). … Each provides an extension of Jacobi’s inversion problem. … Such sets of twelve equations include derivatives, differential equations, bisection relations, duplication relations, addition formulas (including new ones for theta functions), and pseudo-addition formulas. …
26: 19.26 Addition Theorems
§19.26(i) General Formulas
19.26.11 R C ( x + λ , y + λ ) + R C ( x + μ , y + μ ) = R C ( x , y ) ,
§19.26(iii) Duplication Formulas
The equations inverse to z + λ = ( z + x ) ( z + y ) and the two other equations obtained by permuting x , y , z (see (19.26.19)) are …
19.26.25 R C ( x , y ) = 2 R C ( x + λ , y + λ ) , λ = y + 2 x y .
27: 22.21 Tables
Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . … Tables of theta functions (§20.15) can also be used to compute the twelve Jacobian elliptic functions by application of the quotient formulas given in §22.2.
28: 6.14 Integrals
6.14.3 0 e a t si ( t ) d t = 1 a arctan a , a > 0 .
29: 6.18 Methods of Computation
For large x and | z | , expansions in inverse factorial series (§6.10(i)) or asymptotic expansions (§6.12) are available. …Also, other ranges of ph z can be covered by use of the continuation formulas of §6.4. … For example, the Gauss–Laguerre formula3.5(v)) can be applied to (6.2.2); see Todd (1954) and Tseng and Lee (1998). For an application of the Gauss–Legendre formula3.5(v)) see Tooper and Mark (1968). …
30: Bibliography I
  • Inverse Symbolic Calculator (website) Centre for Experimental and Constructive Mathematics, Simon Fraser University, Canada.
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • A. R. Its and A. A. Kapaev (1998) Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution. J. Phys. A 31 (17), pp. 4073–4113.