About the Project

Liouville–Green approximation theorem

AdvancedHelp

(0.002 seconds)

11—20 of 271 matching pages

11: Bibliography
  • W. A. Al-Salam (1990) Characterization theorems for orthogonal polynomials. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
  • W. O. Amrein, A. M. Hinz, and D. B. Pearson (Eds.) (2005) Sturm-Liouville Theory. Birkhäuser Verlag, Basel.
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • T. M. Apostol (2000) A Centennial History of the Prime Number Theorem. In Number Theory, Trends Math., pp. 1–14.
  • M. Aymar, C. H. Greene, and E. Luc-Koenig (1996) Multichannel Rydberg spectroscopy of complex atoms. Reviews of Modern Physics 68, pp. 1015–1123.
  • 12: 27.2 Functions
    §27.2(i) Definitions
    (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) This result, first proved in Hadamard (1896) and de la Vallée Poussin (1896a, b), is known as the prime number theorem. … If ( a , n ) = 1 , then the Euler–Fermat theorem states that … This is Liouville’s function. …
    13: 27.4 Euler Products and Dirichlet Series
    The fundamental theorem of arithmetic is linked to analysis through the concept of the Euler product. …
    27.4.7 n = 1 λ ( n ) n s = ζ ( 2 s ) ζ ( s ) , s > 1 ,
    14: Bibliography E
  • Á. Elbert and A. Laforgia (2000) Further results on McMahon’s asymptotic approximations. J. Phys. A 33 (36), pp. 6333–6341.
  • W. N. Everitt (2005a) A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville theory, pp. 271–331.
  • W. N. Everitt (2005b) Charles Sturm and the development of Sturm-Liouville theory in the years 1900 to 1950. In Sturm-Liouville theory, pp. 45–74.
  • 15: 18.39 Applications in the Physical Sciences
    An important, and perhaps unexpected, feature of the EOP’s is now pointed out by noting that for 1D Schrödinger operators, or equivalent Sturm-Liouville ODEs, having discrete spectra with L 2 eigenfunctions vanishing at the end points, in this case ± see Simon (2005c, Theorem 3.3, p. 35), such eigenfunctions satisfy the Sturm oscillation theorem. …Both satisfy Sturm’s theorem. … A relativistic treatment becoming necessary as Z becomes large as corrections to the non-relativistic Schrödinger picture are of approximate order ( α Z ) 2 ( Z / 137 ) 2 , α being the dimensionless fine structure constant e 2 / ( 4 π ε 0 c ) , where c is the speed of light. … While s in the basis of (18.39.44) is simply a variational parameter, care must be taken, or the relationship between the results of the matrix variational approximation and the Pollaczek polynomials is lost, although this has no effect on the use of the variational approximations Reinhardt (2021a, b). … This equivalent quadrature relationship, see Heller et al. (1973), Yamani and Reinhardt (1975), allows extraction of scattering information from the finite dimensional L 2 functions of (18.39.53), provided that such information involves potentials, or projections onto L 2 functions, exactly expressed, or well approximated, in the finite basis of (18.39.44). …
    16: Bibliography L
  • L. Lorch, M. E. Muldoon, and P. Szegő (1970) Higher monotonicity properties of certain Sturm-Liouville functions. III. Canad. J. Math. 22, pp. 1238–1265.
  • L. Lorch, M. E. Muldoon, and P. Szegő (1972) Higher monotonicity properties of certain Sturm-Liouville functions. IV. Canad. J. Math. 24, pp. 349–368.
  • L. Lorch and P. Szegő (1963) Higher monotonicity properties of certain Sturm-Liouville functions.. Acta Math. 109, pp. 55–73.
  • Y. L. Luke (1968) Approximations for elliptic integrals. Math. Comp. 22 (103), pp. 627–634.
  • Y. L. Luke (1970) Further approximations for elliptic integrals. Math. Comp. 24 (109), pp. 191–198.
  • 17: 18.36 Miscellaneous Polynomials
    They are related to Hermite–Padé approximation and can be used for proofs of irrationality or transcendence of interesting numbers. … Orthogonality of the the classical OP’s with respect to a positive weight function, as in Table 18.3.1 requires, via Favard’s theorem, A n A n 1 C n > 0 for n 1 as per (18.2.9_5). … These results are proven in Everitt et al. (2004), via construction of a self-adjoint Sturm–Liouville operator which generates the L n ( k ) ( x ) polynomials, self-adjointness implying both orthogonality and completeness. … The y ( x ) = L ^ n ( k ) ( x ) satisfy a second order Sturm–Liouville eigenvalue problem of the type illustrated in Table 18.8.1, as satisfied by classical OP’s, but now with rational, rather than polynomial coefficients: … In §18.39(i) it is seen that the functions, w ( x ) H ^ n + 3 ( x ) , are solutions of a Schrödinger equation with a rational potential energy; and, in spite of first appearances, the Sturm oscillation theorem, Simon (2005c, Theorem 3.3, p. 35), is satisfied. …
    18: 2.8 Differential Equations with a Parameter
    In Case III f ( z ) has a simple pole at z 0 and ( z z 0 ) 2 g ( z ) is analytic at z 0 . … First we apply the Liouville transformation1.13(iv)) to (2.8.1). … In Case III the approximating equation is … For connection formulas for LiouvilleGreen approximations across these transition points see Olver (1977b, a, 1978). … For examples of uniform asymptotic approximations in terms of Whittaker functions with fixed second parameter see §18.15(i) and §28.8(iv). …
    19: Bibliography M
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • S. C. Milne (1997) Balanced Θ 2 3 summation theorems for U ( n ) basic hypergeometric series. Adv. Math. 131 (1), pp. 93–187.
  • M. E. Muldoon (1970) Singular integrals whose kernels involve certain Sturm-Liouville functions. I. J. Math. Mech. 19 (10), pp. 855–873.
  • M. E. Muldoon (1977) Higher monotonicity properties of certain Sturm-Liouville functions. V. Proc. Roy. Soc. Edinburgh Sect. A 77 (1-2), pp. 23–37.
  • 20: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    These are based on the Liouville normal form of (1.13.29). … The materials developed here follow from the extensions of the Sturm–Liouville theory of second order ODEs as developed by Weyl, to include the limit point and limit circle singular cases. …Friedman (1990) provides a useful introduction to both approaches; as does the conference proceeding Amrein et al. (2005), overviewing the combination of Sturm–Liouville theory and Hilbert space theory. …