About the Project

Levin%20transformations

AdvancedHelp

(0.001 seconds)

1—10 of 247 matching pages

1: 1.14 Integral Transforms
§1.14 Integral Transforms
§1.14(i) Fourier Transform
§1.14(iii) Laplace Transform
Fourier Transform
Laplace Transform
2: 3.9 Acceleration of Convergence
§3.9(i) Sequence Transformations
§3.9(iv) Shanks’ Transformation
§3.9(v) Levin’s and Weniger’s Transformations
We give a special form of Levin’s transformation in which the sequence s = { s n } of partial sums s n = j = 0 n a j is transformed into: …Sequences that are accelerated by Levin’s transformation include logarithmically convergent sequences, i. …
3: Bibliography L
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • E. Levin and D. S. Lubinsky (2001) Orthogonal Polynomials for Exponential Weights. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 4, Springer-Verlag, New York.
  • E. Levin and D. Lubinsky (2005) Orthogonal polynomials for exponential weights x 2 ρ e 2 Q ( x ) on [ 0 , d ) . J. Approx. Theory 134 (2), pp. 199–256.
  • D. A. Levine (1969) Algorithm 344: Student’s t-distribution [S14]. Comm. ACM 12 (1), pp. 37–38.
  • H. Levine and J. Schwinger (1948) On the theory of diffraction by an aperture in an infinite plane screen. I. Phys. Rev. 74 (8), pp. 958–974.
  • 4: 2.11 Remainder Terms; Stokes Phenomenon
    shows that this direct estimate is correct to almost 3D. The fourth column of Table 2.11.1 gives the results of applying the following variant of Levin’s transformation: …For example, using double precision d 20 is found to agree with (2.11.31) to 13D. However, direct numerical transformations need to be used with care. …
    5: 11.12 Physical Applications
    Applications of Struve functions occur in water-wave and surface-wave problems (Hirata (1975) and Ahmadi and Widnall (1985)), unsteady aerodynamics (Shaw (1985) and Wehausen and Laitone (1960)), distribution of fluid pressure over a vibrating disk (McLachlan (1934)), resistive MHD instability theory (Paris and Sy (1983)), and optical diffraction (Levine and Schwinger (1948)). …
    6: 18.32 OP’s with Respect to Freud Weights
    However, for asymptotic approximations in terms of elementary functions for the OP’s, and also for their largest zeros, see Levin and Lubinsky (2001) and Nevai (1986). … For (generalized) Freud weights on a subinterval of [ 0 , ) see also Levin and Lubinsky (2005).
    7: 20 Theta Functions
    Chapter 20 Theta Functions
    8: 8.28 Software
    See also Dorrer (1968), Gautschi (1964a), Hill (1970), Levine (1969), Morris (1969), and Phien (1990). …
    9: 20.10 Integrals
    §20.10(i) Mellin Transforms with respect to the Lattice Parameter
    20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
    §20.10(ii) Laplace Transforms with respect to the Lattice Parameter
    10: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • D. Naylor (1990) On an asymptotic expansion of the Kontorovich-Lebedev transform. Applicable Anal. 39 (4), pp. 249–263.
  • D. Naylor (1996) On an asymptotic expansion of the Kontorovich-Lebedev transform. Methods Appl. Anal. 3 (1), pp. 98–108.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.