About the Project

Legendre polynomials

AdvancedHelp

(0.007 seconds)

21—30 of 71 matching pages

21: 18.18 Sums
β–Ί
Legendre
β–Ί
18.18.3 a n = ( n + 1 2 ) ⁒ 1 1 f ⁑ ( x ) ⁒ P n ⁑ ( x ) ⁒ d x .
β–Ί
Legendre
β–Ί
Legendre and Chebyshev
β–Ί
18.18.36 β„“ = 0 n P β„“ ⁑ ( x ) ⁒ P n β„“ ⁑ ( x ) = U n ⁑ ( x ) .
22: 18.15 Asymptotic Approximations
β–Ί
§18.15(iii) Legendre
β–Ί
18.15.12 P n ⁑ ( cos ⁑ θ ) = ( 2 sin ⁑ θ ) 1 2 ⁒ m = 0 M 1 ( 1 2 m ) ⁒ ( m 1 2 n ) ⁒ cos ⁑ α n , m ( 2 ⁒ sin ⁑ θ ) m + O ⁑ ( 1 n M + 1 2 ) ,
β–ΊAlso, when 1 6 ⁒ Ο€ < ΞΈ < 5 6 ⁒ Ο€ , the right-hand side of (18.15.12) with M = converges; paradoxically, however, the sum is 2 ⁒ P n ⁑ ( cos ⁑ ΞΈ ) and not P n ⁑ ( cos ⁑ ΞΈ ) as stated erroneously in SzegΕ‘ (1975, §8.4(3)). … β–ΊFor asymptotic expansions of P n ⁑ ( cos ⁑ ΞΈ ) and P n ⁑ ( cosh ⁑ ΞΎ ) that are uniformly valid when 0 ΞΈ Ο€ Ξ΄ and 0 ΞΎ < see §14.15(iii) with ΞΌ = 0 and Ξ½ = n . …
23: 1.17 Integral and Series Representations of the Dirac Delta
β–Ί
Legendre Polynomials (§§14.7(i) and 18.3)
β–Ί
1.17.22 δ ⁑ ( x a ) = k = 0 ( k + 1 2 ) ⁒ P k ⁑ ( x ) ⁒ P k ⁑ ( a ) .
24: 2.10 Sums and Sequences
β–Ί
Example
β–ΊLet Ξ± be a constant in ( 0 , 2 ⁒ Ο€ ) and P n denote the Legendre polynomial of degree n . … β–Ί
2.10.33 f ⁑ ( z ) 1 ( 1 2 ⁒ z ⁒ cos ⁑ α + z 2 ) 1 / 2 = n = 0 P n ⁑ ( cos ⁑ α ) ⁒ z n , | z | < 1 .
β–Ί
2.10.36 P n ⁑ ( cos ⁑ Ξ± ) = ( 2 Ο€ ⁒ n ⁒ sin ⁑ Ξ± ) 1 / 2 ⁒ cos ⁑ ( n ⁒ Ξ± + 1 2 ⁒ Ξ± 1 4 ⁒ Ο€ ) + o ⁑ ( n 1 ) .
25: 18.14 Inequalities
β–Ί
Legendre
β–Ί
18.14.10 ( P n ⁑ ( x ) ) 2 P n 1 ⁑ ( x ) ⁒ P n + 1 ⁑ ( x ) , 1 x 1 .
26: 3.5 Quadrature
β–ΊThe p n ⁒ ( x ) are the monic Legendre polynomials, that is, the polynomials P n ⁑ ( x ) 18.3) scaled so that the coefficient of the highest power of x in their explicit forms is unity. … β–Ί
Table 3.5.2: Nodes and weights for the 10-point Gauss–Legendre formula.
β–Ί β–Ίβ–Ί
± x k w k
β–Ί
β–Ί
Table 3.5.3: Nodes and weights for the 20-point Gauss–Legendre formula.
β–Ί β–Ίβ–Ί
± x k w k
β–Ί
β–Ί
Table 3.5.4: Nodes and weights for the 40-point Gauss–Legendre formula.
β–Ί β–Ίβ–Ί
± x k w k
β–Ί
β–Ί
Table 3.5.5: Nodes and weights for the 80-point Gauss–Legendre formula.
β–Ί β–Ίβ–Ί
± x k w k
β–Ί
27: 14.31 Other Applications
β–ΊMany additional physical applications of Legendre polynomials and associated Legendre functions include solution of the Helmholtz equation, as well as the Laplace equation, in spherical coordinates (Temme (1996b)), quantum mechanics (Edmonds (1974)), and high-frequency scattering by a sphere (Nussenzveig (1965)). …
28: 15.9 Relations to Other Functions
29: 18.16 Zeros
β–Ί
§18.16(iii) Ultraspherical, Legendre and Chebyshev
β–ΊFor ultraspherical and Legendre polynomials, set Ξ± = Ξ² and Ξ± = Ξ² = 0 , respectively, in the results given in §18.16(ii). …
30: 29.14 Orthogonality
β–Ί
29.14.4 𝑠𝐸 2 ⁒ n + 1 m ⁑ ( s , k 2 ) ⁒ 𝑠𝐸 2 ⁒ n + 1 m ⁑ ( K ⁑ + i ⁒ t , k 2 ) ,
β–Ί
29.14.5 𝑐𝐸 2 ⁒ n + 1 m ⁑ ( s , k 2 ) ⁒ 𝑐𝐸 2 ⁒ n + 1 m ⁑ ( K ⁑ + i ⁒ t , k 2 ) ,
β–Ί
29.14.6 𝑑𝐸 2 ⁒ n + 1 m ⁑ ( s , k 2 ) ⁒ 𝑑𝐸 2 ⁒ n + 1 m ⁑ ( K ⁑ + i ⁒ t , k 2 ) ,
β–Ί
29.14.7 𝑠𝑐𝐸 2 ⁒ n + 2 m ⁑ ( s , k 2 ) ⁒ 𝑠𝑐𝐸 2 ⁒ n + 2 m ⁑ ( K ⁑ + i ⁒ t , k 2 ) ,
β–Ί
29.14.8 𝑠𝑑𝐸 2 ⁒ n + 2 m ⁑ ( s , k 2 ) ⁒ 𝑠𝑑𝐸 2 ⁒ n + 2 m ⁑ ( K ⁑ + i ⁒ t , k 2 ) ,