About the Project

Legendre%20polynomials

AdvancedHelp

(0.003 seconds)

11—14 of 14 matching pages

11: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • F. Pollaczek (1949a) Sur une généralisation des polynomes de Legendre. C. R. Acad. Sci. Paris 228, pp. 1363–1365.
  • 12: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • J. Segura and A. Gil (1999) Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • G. Szegő (1948) On an inequality of P. Turán concerning Legendre polynomials. Bull. Amer. Math. Soc. 54, pp. 401–405.
  • 13: Errata
  • Equations (18.17.45), (18.17.46)
    18.17.45 ( n + 1 2 ) ( 1 + x ) 1 2 1 x ( x t ) 1 2 P n ( t ) d t = T n ( x ) + T n + 1 ( x ) = ( 1 + x ) V n ( x )
    18.17.46 ( n + 1 2 ) ( 1 x ) 1 2 x 1 ( t x ) 1 2 P n ( t ) d t = T n ( x ) T n + 1 ( x ) = ( 1 x ) W n ( x )

    The equivalences in terms of ( 1 + x ) V n ( x ) and ( 1 x ) W n ( x ) were added.

  • Chapters 10 Bessel Functions, 18 Orthogonal Polynomials, 34 3j, 6j, 9j Symbols

    The Legendre polynomial P n was mistakenly identified as the associated Legendre function P n in §§10.54, 10.59, 10.60, 18.18, 18.41, 34.3 (and was thus also affected by the bug reported below). These symbols now link correctly to their definitions. Reported by Roy Hughes on 2022-05-23

  • Chapters 1 Algebraic and Analytic Methods, 10 Bessel Functions, 14 Legendre and Related Functions, 18 Orthogonal Polynomials, 29 Lamé Functions

    Over the preceding two months, the subscript parameters of the Ferrers and Legendre functions, 𝖯 n , 𝖰 n , P n , Q n , 𝑸 n and the Laguerre polynomial, L n , were incorrectly displayed as superscripts. Reported by Roy Hughes on 2022-05-23

  • Chapters 14 Legendre and Related Functions, 15 Hypergeometric Function

    The Gegenbauer function C α ( λ ) ( z ) , was labeled inadvertently as the ultraspherical (Gegenbauer) polynomial C n ( λ ) ( z ) . In order to resolve this inconsistency, this function now links correctly to its definition. This change affects Gegenbauer functions which appear in §§14.3(iv), 15.9(iii).

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • 14: Bibliography D
  • G. Delic (1979a) Chebyshev expansion of the associated Legendre polynomial P L M ( x ) . Comput. Phys. Comm. 18 (1), pp. 63–71.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • P. L. Duren (1991) The Legendre Relation for Elliptic Integrals. In Paul Halmos: Celebrating 50 Years of Mathematics, J. H. Ewing and F. W. Gehring (Eds.), pp. 305–315.