About the Project

Laguerre polynomials

AdvancedHelp

(0.008 seconds)

31—40 of 50 matching pages

31: 3.5 Quadrature
The p n ( x ) are the monic Laguerre polynomials L n ( x ) 18.3).
Table 3.5.6: Nodes and weights for the 5-point Gauss–Laguerre formula.
x k w k
Table 3.5.7: Nodes and weights for the 10-point Gauss–Laguerre formula.
x k w k
Table 3.5.17_5: Recurrence coefficients in (3.5.30) and (3.5.30_5) for monic versions p n ( x ) and orthonormal versions q n ( x ) of the classical orthogonal polynomials.
p n ( x ) q n ( x ) α n β n h 0
1 k n L n ( α ) ( x ) ( 1 ) n h n L n ( α ) ( x ) 2 n + α + 1 n ( n + α ) Γ ( α + 1 )
For the choice q n ( x ) = 1 h n L n ( α ) ( x ) the recurrence relation (3.5.30_5) takes the form …
32: 18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes
For a uniform asymptotic expansion of the Stieltjes–Wigert polynomials, see Wang and Wong (2006). For asymptotic approximations to the largest zeros of the q -Laguerre and continuous q 1 -Hermite polynomials see Chen and Ismail (1998).
33: Bibliography Y
  • Z. M. Yan (1992) Generalized Hypergeometric Functions and Laguerre Polynomials in Two Variables. In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemporary Mathematics, Vol. 138, pp. 239–259.
  • 34: 18.24 Hahn Class: Asymptotic Approximations
    Approximations in Terms of Laguerre Polynomials
    These approximations are in terms of Laguerre polynomials and hold uniformly for ph ( x + i λ ) [ 0 , π ] . …
    35: Errata
    We also discuss non-classical Laguerre polynomials and give much more details and examples on exceptional orthogonal polynomials. …
  • Equation (18.34.1)
    18.34.1 y n ( x ; a ) = F 0 2 ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ( x 2 ) n F 1 1 ( n 2 n a + 2 ; 2 x ) = n ! ( 1 2 x ) n L n ( 1 a 2 n ) ( 2 x 1 ) = ( 1 2 x ) 1 1 2 a e 1 / x W 1 1 2 a , 1 2 ( a 1 ) + n ( 2 x 1 )

    This equation was updated to include the definition of Bessel polynomials in terms of Laguerre polynomials and the Whittaker confluent hypergeometric function.

  • Equation (8.7.6)
    8.7.6 Γ ( a , x ) = x a e x n = 0 L n ( a ) ( x ) n + 1 , x > 0 , a < 1 2

    The constraint was updated to include “ a < 1 2 ”.

    Suggested by Walter Gautschi on 2022-10-14

  • Chapters 1 Algebraic and Analytic Methods, 10 Bessel Functions, 14 Legendre and Related Functions, 18 Orthogonal Polynomials, 29 Lamé Functions

    Over the preceding two months, the subscript parameters of the Ferrers and Legendre functions, 𝖯 n , 𝖰 n , P n , Q n , 𝑸 n and the Laguerre polynomial, L n , were incorrectly displayed as superscripts. Reported by Roy Hughes on 2022-05-23

  • Equation (18.15.22)

    Because of the use of the O order symbol on the right-hand side, the asymptotic expansion for the generalized Laguerre polynomial L n ( α ) ( ν x ) was rewritten as an equality.

  • 36: Bibliography T
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N. M. Temme (1990a) Asymptotic estimates for Laguerre polynomials. Z. Angew. Math. Phys. 41 (1), pp. 114–126.
  • 37: Bibliography E
  • W. N. Everitt, L. L. Littlejohn, and R. Wellman (2004) The Sobolev orthogonality and spectral analysis of the Laguerre polynomials { L n k } for positive integers k . J. Comput. Appl. Math. 171 (1-2), pp. 199–234.
  • W. N. Everitt (2008) Note on the X 1 -Laguerre orthogonal polynomials.
  • 38: Bibliography K
  • J. Koekoek, R. Koekoek, and H. Bavinck (1998) On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc. 350 (1), pp. 347–393.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • 39: Bibliography D
  • A. Deaño, E. J. Huertas, and F. Marcellán (2013) Strong and ratio asymptotics for Laguerre polynomials revisited. J. Math. Anal. Appl. 403 (2), pp. 477–486.
  • C. F. Dunkl (2003) A Laguerre polynomial orthogonality and the hydrogen atom. Anal. Appl. (Singap.) 1 (2), pp. 177–188.
  • 40: Bibliography G
  • B. Gabutti and B. Minetti (1981) A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function. J. Comput. Phys. 42 (2), pp. 277–287.
  • L. Gatteschi (2002) Asymptotics and bounds for the zeros of Laguerre polynomials: A survey. J. Comput. Appl. Math. 144 (1-2), pp. 7–27.