About the Project

Laguerre polynomials

AdvancedHelp

(0.008 seconds)

11—20 of 50 matching pages

11: 18.9 Recurrence Relations and Derivatives
Table 18.9.2: Classical OP’s: recurrence relations (18.9.2_1).
p n ( x ) a n b n c n
L n ( α ) ( x ) n 1 2 n + α + 1 n α
18.9.13 L n ( α ) ( x ) = L n ( α + 1 ) ( x ) L n 1 ( α + 1 ) ( x ) ,
18.9.14 x L n ( α + 1 ) ( x ) = ( n + 1 ) L n + 1 ( α ) ( x ) + ( n + α + 1 ) L n ( α ) ( x ) .
Laguerre
18.9.23 d d x L n ( α ) ( x ) = L n 1 ( α + 1 ) ( x ) ,
12: 8.7 Series Expansions
§8.7 Series Expansions
For the functions e n ( z ) , 𝗂 n ( 1 ) ( z ) , and L n ( α ) ( x ) see (8.4.11), §§10.47(ii), and 18.3, respectively. …
8.7.6 Γ ( a , x ) = x a e x n = 0 L n ( a ) ( x ) n + 1 , x > 0 , a < 1 2 .
13: 18.5 Explicit Representations
Table 18.5.1: Classical OP’s: Rodrigues formulas (18.5.5).
p n ( x ) w ( x ) F ( x ) κ n
L n ( α ) ( x ) e x x α x n !
L 0 ( x ) = 1 ,
L 1 ( x ) = x + 1 ,
L 0 ( α ) ( x ) = 1 ,
L 1 ( α ) ( x ) = x + α + 1 ,
14: 18.7 Interrelations and Limit Relations
18.7.19 H 2 n ( x ) = ( 1 ) n 2 2 n n ! L n ( 1 2 ) ( x 2 ) ,
18.7.20 H 2 n + 1 ( x ) = ( 1 ) n 2 2 n + 1 n ! x L n ( 1 2 ) ( x 2 ) .
18.7.21 lim β P n ( α , β ) ( 1 ( 2 x / β ) ) = L n ( α ) ( x ) .
18.7.22 lim α P n ( α , β ) ( ( 2 x / α ) 1 ) = ( 1 ) n L n ( β ) ( x ) .
18.7.26 lim α ( 2 α ) 1 2 n L n ( α ) ( ( 2 α ) 1 2 x + α ) = ( 1 ) n n ! H n ( x ) .
15: 18.21 Hahn Class: Interrelations
Meixner Laguerre
18.21.8 lim c 1 M n ( ( 1 c ) 1 x ; α + 1 , c ) = L n ( α ) ( x ) L n ( α ) ( 0 ) .
Meixner–Pollaczek Laguerre
18.21.12 lim ϕ 0 P n ( 1 2 α + 1 2 ) ( ( 2 ϕ ) 1 x ; ϕ ) = L n ( α ) ( x ) .
See accompanying text
Figure 18.21.1: Askey scheme. … Magnify
16: 18.10 Integral Representations
Laguerre
18.10.6 L n ( α ) ( x 2 ) = 2 ( 1 ) n π 1 2 Γ ( α + 1 2 ) n ! 0 0 π ( x 2 r 2 + 2 i x r cos ϕ ) n e r 2 r 2 α + 1 ( sin ϕ ) 2 α d ϕ d r , α > 1 2 .
Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
L n ( α ) ( x ) e x x α z ( z x ) 1 z α e z x 0 outside C .
Laguerre
18.10.9 L n ( α ) ( x ) = e x x 1 2 α n ! 0 e t t n + 1 2 α J α ( 2 x t ) d t , α > 1 .
17: 18.11 Relations to Other Functions
Laguerre
18.11.2 L n ( α ) ( x ) = ( α + 1 ) n n ! M ( n , α + 1 , x ) = ( 1 ) n n ! U ( n , α + 1 , x ) = ( α + 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x M n + 1 2 ( α + 1 ) , 1 2 α ( x ) = ( 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x W n + 1 2 ( α + 1 ) , 1 2 α ( x ) .
Laguerre
18.11.6 lim n 1 n α L n ( α ) ( z n ) = 1 z 1 2 α J α ( 2 z 1 2 ) .
18: 18.34 Bessel Polynomials
For the confluent hypergeometric function F 1 1 and the generalized hypergeometric function F 0 2 , the Laguerre polynomial L n ( α ) and the Whittaker function W κ , μ see §16.2(ii), §16.2(iv), (18.5.12), and (13.14.3), respectively.
18.34.1 y n ( x ; a ) = F 0 2 ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ( x 2 ) n F 1 1 ( n 2 n a + 2 ; 2 x ) = n ! ( 1 2 x ) n L n ( 1 a 2 n ) ( 2 x 1 ) = ( 1 2 x ) 1 1 2 a e 1 / x W 1 1 2 a , 1 2 ( a 1 ) + n ( 2 x 1 ) .
18.34.7_1 ϕ n ( x ; λ ) = e λ e x ( 2 λ e x ) λ 1 2 y n ( λ 1 e x ; 2 2 λ ) / n ! = ( 1 ) n e λ e x ( 2 λ e x ) λ n 1 2 L n ( 2 λ 2 n 1 ) ( 2 λ e x ) = ( 2 λ ) 1 2 e x / 2 W λ , n + 1 2 λ ( 2 λ e x ) / n ! , n = 0 , 1 , , N = λ 3 2 , λ > 1 2 ,
expressed in terms of Romanovski–Bessel polynomials, Laguerre polynomials or Whittaker functions, we have …
19: 18.27 q -Hahn Class
Little q -Laguerre polynomials
18.27.14_6 lim q 1 p n ( ( 1 q ) x ; q α , 0 ; q ) = n ! ( α + 1 ) n L n ( α ) ( x ) .
18.27.16 0 L n ( α ) ( x ; q ) L m ( α ) ( x ; q ) x α ( x ; q ) d x = ( q α + 1 ; q ) n ( q ; q ) n q n h 0 ( 1 ) δ n , m , α > 1 ,
18.27.17 y = L n ( α ) ( c q y ; q ) L m ( α ) ( c q y ; q ) q y ( α + 1 ) ( c q y ; q ) = ( q α + 1 ; q ) n ( q ; q ) n q n h 0 ( 2 ) δ n , m , α > 1 , c > 0 ,
18.27.17_3 lim q 1 L n ( α ) ( ( 1 q ) x ; q ) = L n ( α ) ( x ) .
20: 18.39 Applications in the Physical Sciences
p here being the order of the Laguerre polynomial, L p ( 2 l + 1 ) of Table 18.8.1, line 11, and l the angular momentum quantum number, and where …
18.39.34 ψ n , l ( r ) = 1 n Z ( n l 1 ) ! ( n + l ) ! e ρ n / 2 ρ n l + 1 L n l 1 ( 2 l + 1 ) ( ρ n ) , n = 1 , 2 , , l = 0 , 1 , n 1 ,
18.39.40 𝐋 p + m m ( ρ ) = ( 1 ) m ( p + m ) ! L p ( m ) ( ρ ) ,
18.39.41 L n l 1 ( 2 l + 1 ) ( ρ n ) = 𝐋 n + l 2 l + 1 ( ρ n ) / ( n + l ) ! ,
18.39.44 ϕ n , l ( s r ) = ( s r ) l + 1 e s r / 2 L n ( 2 l + 1 ) ( s r ) , n = 0 , 1 , 2 , ,