About the Project

Lagrange inversion theorem

AdvancedHelp

(0.001 seconds)

21—30 of 255 matching pages

21: 19.11 Addition Theorems
§19.11 Addition Theorems
19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
22: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.2: Principal values of arcsinh x and arccosh x . … Magnify
See accompanying text
Figure 4.29.4: Principal values of arctanh x and arccoth x . … Magnify
§4.29(ii) Complex Arguments
The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
23: 4.1 Special Notation
The main purpose of the present chapter is to extend these definitions and properties to complex arguments z . The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. Sometimes in the literature the meanings of ln and Ln are interchanged; similarly for arcsin z and Arcsin z , etc. … sin 1 z for arcsin z and Sin 1 z for Arcsin z .
24: 30.10 Series and Integrals
For an addition theorem, see Meixner and Schäfke (1954, p. 300) and King and Van Buren (1973). …
25: 10.44 Sums
§10.44(i) Multiplication Theorem
§10.44(ii) Addition Theorems
Neumann’s Addition Theorem
Graf’s and Gegenbauer’s Addition Theorems
26: 3.4 Differentiation
§3.4(i) Equally-Spaced Nodes
The Lagrange ( n + 1 ) -point formula is …
27: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • P. Ribenboim (1979) 13 Lectures on Fermat’s Last Theorem. Springer-Verlag, New York.
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.
  • 28: 9.8 Modulus and Phase
    9.8.4 θ ( x ) = arctan ( Ai ( x ) / Bi ( x ) ) .
    9.8.8 ϕ ( x ) = arctan ( Ai ( x ) / Bi ( x ) ) .
    9.8.11 θ ( x ) = 2 3 π + arctan ( Y 1 / 3 ( ξ ) / J 1 / 3 ( ξ ) ) ,
    9.8.12 ϕ ( x ) = 1 3 π + arctan ( Y 2 / 3 ( ξ ) / J 2 / 3 ( ξ ) ) .
    9.8.22 θ ( x ) π 4 + 2 3 ( x ) 3 / 2 ( 1 + 5 32 1 x 3 + 1105 6144 1 x 6 + 82825 65536 1 x 9 + 12820 31525 587 20256 1 x 12 + ) ,
    29: 1.2 Elementary Algebra
    Binomial Theorem
    The Inverse
    If det( 𝐀 ) 0 , 𝐀 has a unique inverse, 𝐀 1 , such that …If det ( 𝐀 ) = 0 then 𝐀 𝐁 = 𝐀 𝐂 does not imply that 𝐁 = 𝐂 ; if det ( 𝐀 ) 0 , then 𝐁 = 𝐂 , as both sides may be multiplied by 𝐀 1 . … has a unique solution, 𝐛 = 𝐀 1 𝐜 . …
    30: 19.35 Other Applications
    §19.35(i) Mathematical
    Generalizations of elliptic integrals appear in analysis of modular theorems of Ramanujan (Anderson et al. (2000)); analysis of Selberg integrals (Van Diejen and Spiridonov (2001)); use of Legendre’s relation (19.7.1) to compute π to high precision (Borwein and Borwein (1987, p. 26)). …