About the Project

L%20orthornormal%20basis

AdvancedHelp

The term"orthornorm" was not found.Possible alternative term: "orthonorm".

(0.003 seconds)

1—10 of 199 matching pages

1: 23.14 Integrals
β–Ί β–Ί
23.14.2 2 ⁑ ( z ) ⁒ d z = 1 6 ⁒ ⁑ ( z ) + 1 12 ⁒ g 2 ⁑ ⁒ z ,
β–Ί
2: 23.9 Laurent and Other Power Series
β–Ί
23.9.1 c n = ( 2 ⁒ n 1 ) ⁒ w 𝕃 βˆ– { 0 } w 2 ⁒ n , n = 2 , 3 , 4 , .
β–Ί
23.9.2 ⁑ ( z ) = 1 z 2 + n = 2 c n ⁒ z 2 ⁒ n 2 , 0 < | z | < | z 0 | ,
β–Ί
23.9.3 ΢ ⁑ ( z ) = 1 z n = 2 c n 2 ⁒ n 1 ⁒ z 2 ⁒ n 1 , 0 < | z | < | z 0 | .
β–Ί
c 2 = 1 20 ⁒ g 2 ⁑ ,
β–Ί
23.9.7 Οƒ ⁑ ( z ) = m , n = 0 a m , n ⁒ ( 10 ⁒ c 2 ) m ⁒ ( 56 ⁒ c 3 ) n ⁒ z 4 ⁒ m + 6 ⁒ n + 1 ( 4 ⁒ m + 6 ⁒ n + 1 ) ! ,
3: 11.14 Tables
β–Ί
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ⁑ ( x ) , 𝐇 n ⁑ ( x ) Y n ⁑ ( x ) , and I n ⁑ ( x ) 𝐋 n ⁑ ( x ) for n = 0 , 1 and x = 0 ⁒ ( .1 ) ⁒ 5 , x 1 = 0 ⁒ ( .01 ) ⁒ 0.2 to 6D or 7D.

  • β–Ί
  • Agrest et al. (1982) tabulates 𝐇 n ⁑ ( x ) and e x ⁒ 𝐋 n ⁑ ( x ) for n = 0 , 1 and x = 0 ⁒ ( .001 ) ⁒ 5 ⁒ ( .005 ) ⁒ 15 ⁒ ( .01 ) ⁒ 100 to 11D.

  • β–Ί
  • Barrett (1964) tabulates 𝐋 n ⁑ ( x ) for n = 0 , 1 and x = 0.2 ⁒ ( .005 ) ⁒ 4 ⁒ ( .05 ) ⁒ 10 ⁒ ( .1 ) ⁒ 19.2 to 5 or 6S, x = 6 ⁒ ( .25 ) ⁒ 59.5 ⁒ ( .5 ) ⁒ 100 to 2S.

  • β–Ί
  • Zhang and Jin (1996) tabulates 𝐇 n ⁑ ( x ) and 𝐋 n ⁑ ( x ) for n = 4 ⁒ ( 1 ) ⁒ 3 and x = 0 ⁒ ( 1 ) ⁒ 20 to 8D or 7S.

  • β–Ί
  • Agrest et al. (1982) tabulates 0 x 𝐇 0 ⁑ ( t ) ⁒ d t and e x ⁒ 0 x 𝐋 0 ⁑ ( t ) ⁒ d t for x = 0 ⁒ ( .001 ) ⁒ 5 ⁒ ( .005 ) ⁒ 15 ⁒ ( .01 ) ⁒ 100 to 11D.

  • 4: 20 Theta Functions
    Chapter 20 Theta Functions
    5: 18.39 Applications in the Physical Sciences
    β–Ίwhere L 2 is the (squared) angular momentum operator (14.30.12). … β–Ίwith an infinite set of orthonormal L 2 eigenfunctions … β–Ίis tridiagonalized in the complete L 2 non-orthogonal (with measure d r , r [ 0 , ) ) basis of Laguerre functions: … β–ΊFor either sign of Z , and s chosen such that n + l + 1 + ( 2 ⁒ Z / s ) > 0 , n = 0 , 1 , 2 , , truncation of the basis to N terms, with x i N [ 1 , 1 ] , the discrete eigenvectors are the orthonormal L 2 functions …This equivalent quadrature relationship, see Heller et al. (1973), Yamani and Reinhardt (1975), allows extraction of scattering information from the finite dimensional L 2 functions of (18.39.53), provided that such information involves potentials, or projections onto L 2 functions, exactly expressed, or well approximated, in the finite basis of (18.39.44). …
    6: 18.5 Explicit Representations
    β–ΊSimilarly in the cases of the ultraspherical polynomials C n ( Ξ» ) ⁑ ( x ) and the Laguerre polynomials L n ( Ξ± ) ⁑ ( x ) we assume that Ξ» > 1 2 , Ξ» 0 , and Ξ± > 1 , unless stated otherwise. … β–Ί
    L 0 ⁑ ( x ) = 1 ,
    β–Ί
    L 6 ⁑ ( x ) = 1 720 ⁒ x 6 1 20 ⁒ x 5 + 5 8 ⁒ x 4 10 3 ⁒ x 3 + 15 2 ⁒ x 2 6 ⁒ x + 1 .
    β–Ί
    L 0 ( α ) ⁑ ( x ) = 1 ,
    β–Ί
    L 1 ( α ) ⁑ ( x ) = x + α + 1 ,
    7: 25.15 Dirichlet L -functions
    §25.15 Dirichlet L -functions
    β–Ί
    §25.15(i) Definitions and Basic Properties
    β–ΊThe notation L ⁑ ( s , Ο‡ ) was introduced by Dirichlet (1837) for the meromorphic continuation of the function defined by the series … … β–Ί
    §25.15(ii) Zeros
    8: 25.12 Polylogarithms
    β–ΊOther notations and names for Li 2 ⁑ ( z ) include S 2 ⁑ ( z ) (Kölbig et al. (1970)), Spence function Sp ⁑ ( z ) (’t Hooft and Veltman (1979)), and L 2 ⁑ ( z ) (Maximon (2003)). … β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 25.12.1: Dilogarithm function Li 2 ⁑ ( x ) , 20 x < 1 . Magnify
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ⁑ ( x + i ⁒ y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    9: 23.21 Physical Applications
    β–ΊIn §22.19(ii) it is noted that Jacobian elliptic functions provide a natural basis of solutions for problems in Newtonian classical dynamics with quartic potentials in canonical form ( 1 x 2 ) ⁒ ( 1 k 2 ⁒ x 2 ) . … β–Ί
    23.21.1 x 2 ρ e 1 ⁑ + y 2 ρ e 2 ⁑ + z 2 ρ e 3 ⁑ = 1 ,
    β–Ί
    23.21.3 f ⁑ ( ρ ) = 2 ⁒ ( ( ρ e 1 ⁑ ) ⁒ ( ρ e 2 ⁑ ) ⁒ ( ρ e 3 ⁑ ) ) 1 / 2 .
    β–Ί
    23.21.5 ( ⁑ ( v ) ⁑ ( w ) ) ⁒ ( ⁑ ( w ) ⁑ ( u ) ) ⁒ ( ⁑ ( u ) ⁑ ( v ) ) ⁒ 2 = ( ⁑ ( w ) ⁑ ( v ) ) ⁒ 2 u 2 + ( ⁑ ( u ) ⁑ ( w ) ) ⁒ 2 v 2 + ( ⁑ ( v ) ⁑ ( u ) ) ⁒ 2 w 2 .
    10: 18.4 Graphics
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 18.4.5: Laguerre polynomials L n ⁑ ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 18.4.6: Laguerre polynomials L 3 ( α ) ⁑ ( x ) , α = 0 , 1 , 2 , 3 , 4 . Magnify
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 18.4.8: Laguerre polynomials L 3 ( α ) ⁑ ( x ) , 0 α 3 , 0 x 10 . Magnify 3D Help
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 18.4.9: Laguerre polynomials L 4 ( α ) ⁑ ( x ) , 0 α 3 , 0 x 10 . Magnify 3D Help