About the Project

Kummer equation

AdvancedHelp

(0.001 seconds)

11—20 of 39 matching pages

11: 13.9 Zeros
β–Ί
§13.9(i) Zeros of M ⁑ ( a , b , z )
β–Ίβ–Ίβ–Ίβ–Ί
§13.9(ii) Zeros of U ⁑ ( a , b , z )
12: 13.11 Series
β–Ί
13.11.2 M ⁑ ( a , b , z ) = Ξ“ ⁑ ( b a 1 2 ) ⁒ e 1 2 ⁒ z ⁒ ( 1 4 ⁒ z ) a b + 1 2 ⁒ s = 0 ( 1 ) s ⁒ ( 2 ⁒ b 2 ⁒ a 1 ) s ⁒ ( b 2 ⁒ a ) s ⁒ ( b a 1 2 + s ) ( b ) s ⁒ s ! ⁒ I b a 1 2 + s ⁑ ( 1 2 ⁒ z ) , b a + 1 2 , b 0 , 1 , 2 , .
β–Ί
13.11.3 𝐌 ⁑ ( a , b , z ) = e 1 2 ⁒ z ⁒ s = 0 A s ⁒ ( b 2 ⁒ a ) 1 2 ⁒ ( 1 b s ) ⁒ ( 1 2 ⁒ z ) 1 2 ⁒ ( 1 b + s ) ⁒ J b 1 + s ⁑ ( 2 ⁒ z ⁒ ( b 2 ⁒ a ) ) ,
13: 13.6 Relations to Other Functions
β–Ί
13.6.11_1 M ⁑ ( Ξ½ + 1 2 , 2 ⁒ Ξ½ + 1 + n , 2 ⁒ z ) = Ξ“ ⁑ ( Ξ½ ) ⁒ e z ⁒ ( z / 2 ) Ξ½ ⁒ k = 0 n ( n ) k ⁒ ( 2 ⁒ Ξ½ ) k ⁒ ( Ξ½ + k ) ( 2 ⁒ Ξ½ + 1 + n ) k ⁒ k ! ⁒ I Ξ½ + k ⁑ ( z ) ,
β–Ί
13.6.11_2 M ⁑ ( Ξ½ + 1 2 , 2 ⁒ Ξ½ + 1 n , 2 ⁒ z ) = Ξ“ ⁑ ( Ξ½ n ) ⁒ e z ⁒ ( z / 2 ) n Ξ½ ⁒ k = 0 n ( 1 ) k ⁒ ( n ) k ⁒ ( 2 ⁒ Ξ½ 2 ⁒ n ) k ⁒ ( Ξ½ n + k ) ( 2 ⁒ Ξ½ + 1 n ) k ⁒ k ! ⁒ I Ξ½ + k n ⁑ ( z ) .
14: 13.13 Addition and Multiplication Theorems
β–Ί
§13.13(i) Addition Theorems for M ⁑ ( a , b , z )
β–ΊThe function M ⁑ ( a , b , x + y ) has the following expansions: … β–Ί
§13.13(ii) Addition Theorems for U ⁑ ( a , b , z )
β–ΊThe function U ⁑ ( a , b , x + y ) has the following expansions: … β–Ί
§13.13(iii) Multiplication Theorems for M ⁑ ( a , b , z ) and U ⁑ ( a , b , z )
15: 9.6 Relations to Other Functions
β–Ί
9.6.26 Bi ⁑ ( z ) = 3 1 / 6 Ξ“ ⁑ ( 1 3 ) ⁒ e ΞΆ ⁒ F 1 1 ⁑ ( 1 6 ; 1 3 ; 2 ⁒ ΞΆ ) + 3 7 / 6 2 7 / 3 ⁒ Ξ“ ⁑ ( 2 3 ) ⁒ ΞΆ 4 / 3 ⁒ e ΞΆ ⁒ F 1 1 ⁑ ( 7 6 ; 7 3 ; 2 ⁒ ΞΆ ) .
16: 10.16 Relations to Other Functions
β–ΊPrincipal values on each side of these equations correspond. … β–Ί
10.16.5 J Ξ½ ⁑ ( z ) = ( 1 2 ⁒ z ) Ξ½ ⁒ e βˆ“ i ⁒ z Ξ“ ⁑ ( Ξ½ + 1 ) ⁒ M ⁑ ( Ξ½ + 1 2 , 2 ⁒ Ξ½ + 1 , ± 2 ⁒ i ⁒ z ) ,
β–Ί
10.16.6 H Ξ½ ( 1 ) ⁑ ( z ) H Ξ½ ( 2 ) ⁑ ( z ) } = βˆ“ 2 ⁒ Ο€ 1 2 ⁒ i ⁒ e βˆ“ Ξ½ ⁒ Ο€ ⁒ i ⁒ ( 2 ⁒ z ) Ξ½ ⁒ e ± i ⁒ z ⁒ U ⁑ ( Ξ½ + 1 2 , 2 ⁒ Ξ½ + 1 , βˆ“ 2 ⁒ i ⁒ z ) .
β–ΊFor the functions M and U see §13.2(i). …
17: 18.17 Integrals
β–Ί
18.17.16 1 1 ( 1 x ) α ⁒ ( 1 + x ) β ⁒ P n ( α , β ) ⁑ ( x ) ⁒ e i ⁒ x ⁒ y ⁒ d x = ( i ⁒ y ) n ⁒ e i ⁒ y n ! ⁒ 2 n + α + β + 1 ⁒ B ⁑ ( n + α + 1 , n + β + 1 ) ⁒ F 1 1 ⁑ ( n + α + 1 ; 2 ⁒ n + α + β + 2 ; 2 ⁒ i ⁒ y ) .
β–ΊFor the beta function B ⁑ ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. … β–Ί
18.17.33 1 1 e ( x + 1 ) ⁒ z ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) ⁒ ( 1 x ) Ξ± ⁒ ( 1 + x ) Ξ² ⁒ d x = ( 1 ) n ⁒ 2 Ξ± + Ξ² + n + 1 ⁒ Ξ“ ⁑ ( Ξ± + n + 1 ) ⁒ Ξ“ ⁑ ( Ξ² + n + 1 ) Ξ“ ⁑ ( Ξ± + Ξ² + 2 ⁒ n + 2 ) ⁒ n ! ⁒ z n ⁒ F 1 1 ⁑ ( Ξ² + n + 1 Ξ± + Ξ² + 2 ⁒ n + 2 ; 2 ⁒ z ) , z β„‚ .
β–ΊFor the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. … β–Ί
18.17.45 ( n + 1 2 ) ⁒ ( 1 + x ) 1 2 ⁒ 1 x ( x t ) 1 2 ⁒ P n ⁑ ( t ) ⁒ d t = T n ⁑ ( x ) + T n + 1 ⁑ ( x ) = ( 1 + x ) ⁒ V n ⁑ ( x ) ,
18: 10.39 Relations to Other Functions
β–ΊPrincipal values on each side of these equations correspond. … β–Ί
10.39.5 I Ξ½ ⁑ ( z ) = ( 1 2 ⁒ z ) Ξ½ ⁒ e ± z Ξ“ ⁑ ( Ξ½ + 1 ) ⁒ M ⁑ ( Ξ½ + 1 2 , 2 ⁒ Ξ½ + 1 , βˆ“ 2 ⁒ z ) ,
β–Ί
10.39.6 K Ξ½ ⁑ ( z ) = Ο€ 1 2 ⁒ ( 2 ⁒ z ) Ξ½ ⁒ e z ⁒ U ⁑ ( Ξ½ + 1 2 , 2 ⁒ Ξ½ + 1 , 2 ⁒ z ) ,
β–ΊFor the functions M , U , M 0 , Ξ½ , and W 0 , Ξ½ see §§13.2(i) and 13.14(i). …
19: Bibliography K
β–Ί
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • β–Ί
  • N. M. Katz (1975) The congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz numbers. Math. Ann. 216 (1), pp. 1–4.
  • β–Ί
  • A. V. Kitaev, C. K. Law, and J. B. McLeod (1994) Rational solutions of the fifth Painlevé equation. Differential Integral Equations 7 (3-4), pp. 967–1000.
  • β–Ί
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.
  • β–Ί
  • M. D. Kruskal (1974) The Korteweg-de Vries Equation and Related Evolution Equations. In Nonlinear Wave Motion (Proc. AMS-SIAM Summer Sem., Clarkson Coll. Tech., Potsdam, N.Y., 1972), A. C. Newell (Ed.), Lectures in Appl. Math., Vol. 15, pp. 61–83.
  • 20: 18.34 Bessel Polynomials
    β–Ί
    18.34.1 y n ⁑ ( x ; a ) = F 0 2 ⁑ ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ⁒ ( x 2 ) n ⁒ F 1 1 ⁑ ( n 2 ⁒ n a + 2 ; 2 x ) = n ! ⁒ ( 1 2 ⁒ x ) n ⁒ L n ( 1 a 2 ⁒ n ) ⁑ ( 2 ⁒ x 1 ) = ( 1 2 ⁒ x ) 1 1 2 ⁒ a ⁒ e 1 / x ⁒ W 1 1 2 ⁒ a , 1 2 ⁒ ( a 1 ) + n ⁑ ( 2 ⁒ x 1 ) .