About the Project

Kummer congruences

AdvancedHelp

(0.001 seconds)

21—30 of 76 matching pages

21: 6.11 Relations to Other Functions
22: 13.11 Series
13.11.1 M ( a , b , z ) = Γ ( a 1 2 ) e 1 2 z ( 1 4 z ) 1 2 a s = 0 ( 2 a 1 ) s ( 2 a b ) s ( b ) s s ! ( a 1 2 + s ) I a 1 2 + s ( 1 2 z ) , a + 1 2 , b 0 , 1 , 2 , ,
13.11.2 M ( a , b , z ) = Γ ( b a 1 2 ) e 1 2 z ( 1 4 z ) a b + 1 2 s = 0 ( 1 ) s ( 2 b 2 a 1 ) s ( b 2 a ) s ( b a 1 2 + s ) ( b ) s s ! I b a 1 2 + s ( 1 2 z ) , b a + 1 2 , b 0 , 1 , 2 , .
13.11.3 𝐌 ( a , b , z ) = e 1 2 z s = 0 A s ( b 2 a ) 1 2 ( 1 b s ) ( 1 2 z ) 1 2 ( 1 b + s ) J b 1 + s ( 2 z ( b 2 a ) ) ,
( n + 1 ) A n + 1 = ( n + b 1 ) A n 1 + ( 2 a b ) A n 2 , n = 2 , 3 , 4 , .
23: 13.31 Approximations
§13.31 Approximations
§13.31(i) Chebyshev-Series Expansions
Luke (1969b, pp. 35 and 25) provides Chebyshev-series expansions of M ( a , b , x ) and U ( a , b , x ) that include the intervals 0 x α and α x < , respectively, where α is an arbitrary positive constant. …
13.31.3 z a U ( a , 1 + a b , z ) = lim n A n ( z ) B n ( z ) .
24: Bibliography K
  • N. M. Katz (1975) The congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz numbers. Math. Ann. 216 (1), pp. 1–4.
  • 25: 13.4 Integral Representations
    §13.4(i) Integrals Along the Real Line
    13.4.5 U ( a , b , z ) = z 1 a Γ ( a ) Γ ( 1 + a b ) 0 U ( b a , b , t ) e t t a 1 t + z d t , | ph z | < π , a > max ( b 1 , 0 ) ,
    §13.4(ii) Contour Integrals
    §13.4(iii) Mellin–Barnes Integrals
    26: 12.20 Approximations
    Luke (1969b, pp. 25 and 35) gives Chebyshev-series expansions for the confluent hypergeometric functions U ( a , b , x ) and M ( a , b , x ) 13.2(i)) whose regions of validity include intervals with endpoints x = and x = 0 , respectively. …
    27: 27.9 Quadratic Characters
    If p does not divide n , then ( n | p ) has the value 1 when the quadratic congruence x 2 n ( mod p ) has a solution, and the value 1 when this congruence has no solution. …
    28: 13.9 Zeros
    §13.9(i) Zeros of M ( a , b , z )
    §13.9(ii) Zeros of U ( a , b , z )
    29: 13.7 Asymptotic Expansions for Large Argument
    §13.7 Asymptotic Expansions for Large Argument
    §13.7(ii) Error Bounds
    13.7.4 U ( a , b , z ) = z a s = 0 n 1 ( a ) s ( a b + 1 ) s s ! ( z ) s + ε n ( z ) ,
    §13.7(iii) Exponentially-Improved Expansion
    For extensions to hyperasymptotic expansions see Olde Daalhuis and Olver (1995a).
    30: 7.11 Relations to Other Functions
    7.11.4 erf z = 2 z π M ( 1 2 , 3 2 , z 2 ) = 2 z π e z 2 M ( 1 , 3 2 , z 2 ) ,
    7.11.5 erfc z = 1 π e z 2 U ( 1 2 , 1 2 , z 2 ) = z π e z 2 U ( 1 , 3 2 , z 2 ) .
    7.11.6 C ( z ) + i S ( z ) = z M ( 1 2 , 3 2 , 1 2 π i z 2 ) = z e π i z 2 / 2 M ( 1 , 3 2 , 1 2 π i z 2 ) .