About the Project

Jacobi function

AdvancedHelp

(0.009 seconds)

21—30 of 121 matching pages

21: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
20.2.1 θ 1 ( z | τ ) = θ 1 ( z , q ) = 2 n = 0 ( 1 ) n q ( n + 1 2 ) 2 sin ( ( 2 n + 1 ) z ) ,
20.2.2 θ 2 ( z | τ ) = θ 2 ( z , q ) = 2 n = 0 q ( n + 1 2 ) 2 cos ( ( 2 n + 1 ) z ) ,
For fixed τ , each θ j ( z | τ ) is an entire function of z with period 2 π ; θ 1 ( z | τ ) is odd in z and the others are even. For fixed z , each of θ 1 ( z | τ ) / sin z , θ 2 ( z | τ ) / cos z , θ 3 ( z | τ ) , and θ 4 ( z | τ ) is an analytic function of τ for τ > 0 , with a natural boundary τ = 0 , and correspondingly, an analytic function of q for | q | < 1 with a natural boundary | q | = 1 . …
22: 15.9 Relations to Other Functions
Jacobi
§15.9(ii) Jacobi Function
15.9.11 ϕ λ ( α , β ) ( t ) = F ( 1 2 ( α + β + 1 i λ ) , 1 2 ( α + β + 1 + i λ ) α + 1 ; sinh 2 t ) .
15.9.12 f ~ ( λ ) = 0 f ( t ) ϕ λ ( α , β ) ( t ) ( 2 sinh t ) 2 α + 1 ( 2 cosh t ) 2 β + 1 d t ,
with inverse …
23: 22.20 Methods of Computation
§22.20(vi) Related Functions
Jacobi’s epsilon function can be computed from its representation (22.16.30) in terms of theta functions and complete elliptic integrals; compare §20.14. Jacobi’s zeta function can then be found by use of (22.16.32). … For additional information on methods of computation for the Jacobi and related functions, see the introductory sections in the following books: Lawden (1989), Curtis (1964b), Milne-Thomson (1950), and Spenceley and Spenceley (1947). …
24: 10.35 Generating Function and Associated Series
Jacobi–Anger expansions: for z , θ , …
25: 29.18 Mathematical Applications
29.18.6 d 2 u 2 d β 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( β , k ) ) u 2 = 0 ,
29.18.7 d 2 u 3 d γ 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( γ , k ) ) u 3 = 0 ,
26: 20.1 Special Notation
The main functions treated in this chapter are the theta functions θ j ( z | τ ) = θ j ( z , q ) where j = 1 , 2 , 3 , 4 and q = e i π τ . … Primes on the θ symbols indicate derivatives with respect to the argument of the θ function. … Jacobi’s original notation: Θ ( z | τ ) , Θ 1 ( z | τ ) , H ( z | τ ) , H 1 ( z | τ ) , respectively, for θ 4 ( u | τ ) , θ 3 ( u | τ ) , θ 1 ( u | τ ) , θ 2 ( u | τ ) , where u = z / θ 3 2 ( 0 | τ ) . … Neville’s notation: θ s ( z | τ ) , θ c ( z | τ ) , θ d ( z | τ ) , θ n ( z | τ ) , respectively, for θ 3 2 ( 0 | τ ) θ 1 ( u | τ ) / θ 1 ( 0 | τ ) , θ 2 ( u | τ ) / θ 2 ( 0 | τ ) , θ 3 ( u | τ ) / θ 3 ( 0 | τ ) , θ 4 ( u | τ ) / θ 4 ( 0 | τ ) , where again u = z / θ 3 2 ( 0 | τ ) . … McKean and Moll’s notation: ϑ j ( z | τ ) = θ j ( π z | τ ) , j = 1 , 2 , 3 , 4 . …
27: 22.19 Physical Applications
§22.19(i) Classical Dynamics: The Pendulum
22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) ) ,
22.19.3 θ ( t ) = 2 am ( t E / 2 , 2 / E ) ,
See accompanying text
Figure 22.19.1: Jacobi’s amplitude function am ( x , k ) for 0 x 10 π and k = 0.5 , 0.9999 , 1.0001 , 2 . … Magnify
28: 20.4 Values at z = 0
20.4.3 θ 2 ( 0 , q ) = 2 q 1 / 4 n = 1 ( 1 q 2 n ) ( 1 + q 2 n ) 2 ,
20.4.4 θ 3 ( 0 , q ) = n = 1 ( 1 q 2 n ) ( 1 + q 2 n 1 ) 2 ,
20.4.5 θ 4 ( 0 , q ) = n = 1 ( 1 q 2 n ) ( 1 q 2 n 1 ) 2 .
Jacobi’s Identity
20.4.6 θ 1 ( 0 , q ) = θ 2 ( 0 , q ) θ 3 ( 0 , q ) θ 4 ( 0 , q ) .
29: 23.15 Definitions
23.15.6 λ ( τ ) = θ 2 4 ( 0 , q ) θ 3 4 ( 0 , q ) ;
23.15.7 J ( τ ) = ( θ 2 8 ( 0 , q ) + θ 3 8 ( 0 , q ) + θ 4 8 ( 0 , q ) ) 3 54 ( θ 1 ( 0 , q ) ) 8 ,
23.15.8 θ 1 ( 0 , q ) = θ 1 ( z , q ) / z | z = 0 .
30: 14.3 Definitions and Hypergeometric Representations
§14.3(iv) Relations to Other Functions
In terms of the Gegenbauer function C α ( β ) ( x ) and the Jacobi function ϕ λ ( α , β ) ( t ) (§§15.9(iii), 15.9(ii)): …
14.3.23 P ν μ ( x ) = 1 Γ ( 1 μ ) ( x + 1 x 1 ) μ / 2 ϕ i ( 2 ν + 1 ) ( μ , μ ) ( arcsinh ( ( 1 2 x 1 2 ) 1 / 2 ) ) .