About the Project

Jacobi elliptic

AdvancedHelp

(0.007 seconds)

21—30 of 61 matching pages

21: 22.20 Methods of Computation
To compute sn , cn , dn to 10D when x = 0.8 , k = 0.65 . … Then from (22.20.5), sn ( 0.8 , 0.65 ) = 0.69506 42165 , cn ( 0.8 , 0.65 ) = 0.71894 76580 , dn ( 0.8 , 0.65 ) = 0.89212 34349 . … Then by using (22.7.4) we have dn ( 0.2 , 0.19 ) = 0.996253 . If needed, the corresponding values of sn and cn can be found subsequently by applying (22.10.4) and (22.7.2), followed by (22.10.5) and (22.7.3). …
§22.20(vi) Related Functions
22: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
22.12.2 2 K k sn ( 2 K t , k ) = n = π sin ( π ( t ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) τ ) ,
22.12.8 2 K dc ( 2 K t , k ) = n = π sin ( π ( t + 1 2 n τ ) ) = n = ( m = ( 1 ) m t + 1 2 m n τ ) ,
22.12.11 2 K ns ( 2 K t , k ) = n = π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m t m n τ ) ,
22.12.12 2 K ds ( 2 K t , k ) = n = ( 1 ) n π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m + n t m n τ ) ,
22.12.13 2 K cs ( 2 K t , k ) = lim N n = N N ( 1 ) n π tan ( π ( t n τ ) ) = lim N n = N N ( 1 ) n ( lim M m = M M 1 t m n τ ) .
23: 29.17 Other Solutions
They are algebraic functions of sn ( z , k ) , cn ( z , k ) , and dn ( z , k ) , and have primitive period 8 K . … Lamé–Wangerin functions are solutions of (29.2.1) with the property that ( sn ( z , k ) ) 1 / 2 w ( z ) is bounded on the line segment from i K to 2 K + i K . …
24: 29.12 Definitions
These functions are polynomials in sn ( z , k ) , cn ( z , k ) , and dn ( z , k ) . … In the fourth column the variable z and modulus k of the Jacobian elliptic functions have been suppressed, and P ( sn 2 ) denotes a polynomial of degree n in sn 2 ( z , k ) (different for each type). …
Table 29.12.1: Lamé polynomials.
ν
eigenvalue
h
eigenfunction
w ( z )
polynomial
form
real
period
imag.
period
parity of
w ( z )
parity of
w ( z K )
parity of
w ( z K i K )
2 n + 2 b ν 2 m + 2 ( k 2 ) 𝑠𝑐𝐸 ν m ( z , k 2 ) sn cn P ( sn 2 ) 2 K 4 i K odd odd even
2 n + 3 b ν 2 m + 2 ( k 2 ) 𝑠𝑐𝑑𝐸 ν m ( z , k 2 ) sn cn dn P ( sn 2 ) 2 K 2 i K odd odd odd
With the substitution ξ = sn 2 ( z , k ) every Lamé polynomial in Table 29.12.1 can be written in the form …
25: 29.15 Fourier Series and Chebyshev Series
Since (29.2.5) implies that cos ϕ = sn ( z , k ) , (29.15.1) can be rewritten in the form …This determines the polynomial P of degree n for which 𝑢𝐸 2 n m ( z , k 2 ) = P ( sn 2 ( z , k ) ) ; compare Table 29.12.1. …
26: 22.19 Physical Applications
§22.19(i) Classical Dynamics: The Pendulum
22.19.3 θ ( t ) = 2 am ( t E / 2 , 2 / E ) ,
Figure 22.19.1 shows the nature of the solutions θ ( t ) of (22.19.3) by graphing am ( x , k ) for both 0 k 1 , as in Figure 22.16.1, and k 1 , where it is periodic. … Both the dn and cn solutions approach a sech t as a 2 / β from the appropriate directions. …
27: 31.2 Differential Equations
Jacobi’s Elliptic Form
z = sn 2 ( ζ , k ) .
31.2.8 d 2 w d ζ 2 + ( ( 2 γ 1 ) cn ζ dn ζ sn ζ ( 2 δ 1 ) sn ζ dn ζ cn ζ ( 2 ϵ 1 ) k 2 sn ζ cn ζ dn ζ ) d w d ζ + 4 k 2 ( α β sn 2 ζ q ) w = 0 .
28: 22.9 Cyclic Identities
22.9.7 κ = dn ( 2 K ( k ) / 3 , k ) ,
29: 19.25 Relations to Other Functions
19.25.28 Δ ( p , q ) = p s 2 ( u , k ) q s 2 ( u , k ) = Δ ( q , p ) ,
If cs 2 ( u , k ) 0 , then
19.25.31 u = R F ( p s 2 ( u , k ) , q s 2 ( u , k ) , r s 2 ( u , k ) ) ;
where we assume 0 x 2 1 if x = sn , cn , or cd ; x 2 1 if x = ns , nc , or dc ; x real if x = cs or sc ; k x 1 if x = dn ; 1 x 1 / k if x = nd ; x 2 k 2 if x = ds ; 0 x 2 1 / k 2 if x = sd . …
30: 29.10 Lamé Functions with Imaginary Periods
29.10.3 d 2 w d z 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( z , k ) ) w = 0 .