About the Project

Jacobi

AdvancedHelp

(0.000 seconds)

31—40 of 126 matching pages

31: 22.3 Graphics
Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. … sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
See accompanying text
Figure 22.3.13: sn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.14: cn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.15: dn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
32: 20.5 Infinite Products and Related Results
20.5.1 θ 1 ( z , q ) = 2 q 1 / 4 sin z n = 1 ( 1 q 2 n ) ( 1 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.2 θ 2 ( z , q ) = 2 q 1 / 4 cos z n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.3 θ 3 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) ,
20.5.4 θ 4 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) .
Jacobi’s Triple Product
33: 18.10 Integral Representations
18.10.1 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = 2 α + 1 2 Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ( sin θ ) 2 α 0 θ cos ( ( n + α + 1 2 ) ϕ ) ( cos ϕ cos θ ) α + 1 2 d ϕ , 0 < θ < π , α > 1 2 .
Generalizations of (18.10.1) for P n ( α , β ) are given in Gasper (1975, (6),(8)) and Koornwinder (1975a, (5.7),(5.8)). …
Jacobi
for the Jacobi, Laguerre, and Hermite polynomials. …
Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
34: 18.12 Generating Functions
The z -radii of convergence will depend on x , and in first instance we will assume x [ 1 , 1 ] for Jacobi, ultraspherical, Chebyshev and Legendre, x [ 0 , ) for Laguerre, and x for Hermite. …
Jacobi
18.12.1 2 α + β R ( 1 + R z ) α ( 1 + R + z ) β = n = 0 P n ( α , β ) ( x ) z n , R = 1 2 x z + z 2 , | z | < 1 ,
18.12.3_5 1 + z ( 1 2 x z + z 2 ) β + 3 2 = n = 0 ( 2 β + 2 ) n ( β + 1 ) n P n ( β + 1 , β ) ( x ) z n , | z | < 1 ,
18.12.4 ( 1 2 x z + z 2 ) λ = n = 0 C n ( λ ) ( x ) z n = n = 0 ( 2 λ ) n ( λ + 1 2 ) n P n ( λ 1 2 , λ 1 2 ) ( x ) z n , | z | < 1 .
35: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
1 P n ( α , β ) ( x ) 1 x 2 β α ( α + β + 2 ) x 0 n ( n + α + β + 1 )
2 ( sin 1 2 x ) α + 1 2 ( cos 1 2 x ) β + 1 2 × P n ( α , β ) ( cos x ) 1 0 1 4 α 2 4 sin 2 1 2 x + 1 4 β 2 4 cos 2 1 2 x ( n + 1 2 ( α + β + 1 ) ) 2
3 ( sin x ) α + 1 2 P n ( α , α ) ( cos x ) 1 0 ( 1 4 α 2 ) / sin 2 x ( n + α + 1 2 ) 2
36: 22.10 Maclaurin Series
22.10.1 sn ( z , k ) = z ( 1 + k 2 ) z 3 3 ! + ( 1 + 14 k 2 + k 4 ) z 5 5 ! ( 1 + 135 k 2 + 135 k 4 + k 6 ) z 7 7 ! + O ( z 9 ) ,
22.10.2 cn ( z , k ) = 1 z 2 2 ! + ( 1 + 4 k 2 ) z 4 4 ! ( 1 + 44 k 2 + 16 k 4 ) z 6 6 ! + O ( z 8 ) ,
22.10.3 dn ( z , k ) = 1 k 2 z 2 2 ! + k 2 ( 4 + k 2 ) z 4 4 ! k 2 ( 16 + 44 k 2 + k 4 ) z 6 6 ! + O ( z 8 ) .
22.10.4 sn ( z , k ) = sin z k 2 4 ( z sin z cos z ) cos z + O ( k 4 ) ,
22.10.6 dn ( z , k ) = 1 k 2 2 sin 2 z + O ( k 4 ) ,
37: 22.20 Methods of Computation
To compute sn , cn , dn to 10D when x = 0.8 , k = 0.65 . … If needed, the corresponding values of sn and cn can be found subsequently by applying (22.10.4) and (22.7.2), followed by (22.10.5) and (22.7.3). …
§22.20(vi) Related Functions
Jacobi’s zeta function can then be found by use of (22.16.32). …
38: 29.18 Mathematical Applications
x = k r sn ( β , k ) sn ( γ , k ) ,
y = i k k r cn ( β , k ) cn ( γ , k ) ,
x = k sn ( α , k ) sn ( β , k ) sn ( γ , k ) ,
y = k k cn ( α , k ) cn ( β , k ) cn ( γ , k ) ,
z = i k k dn ( α , k ) dn ( β , k ) dn ( γ , k ) ,
39: 14.31 Other Applications
§14.31(ii) Conical Functions
The conical functions and Mehler–Fock transform generalize to Jacobi functions and the Jacobi transform; see Koornwinder (1984a) and references therein. …
40: 20.12 Mathematical Applications
For applications of θ 3 ( 0 , q ) to problems involving sums of squares of integers see §27.13(iv), and for extensions see Estermann (1959), Serre (1973, pp. 106–109), Koblitz (1993, pp. 176–177), and McKean and Moll (1999, pp. 142–143). For applications of Jacobi’s triple product (20.5.9) to Ramanujan’s τ ( n ) function and Euler’s pentagonal numbers see Hardy and Wright (1979, pp. 132–160) and McKean and Moll (1999, pp. 143–145). … The space of complex tori / ( + τ ) (that is, the set of complex numbers z in which two of these numbers z 1 and z 2 are regarded as equivalent if there exist integers m , n such that z 1 z 2 = m + τ n ) is mapped into the projective space P 3 via the identification z ( θ 1 ( 2 z | τ ) , θ 2 ( 2 z | τ ) , θ 3 ( 2 z | τ ) , θ 4 ( 2 z | τ ) ) . …