About the Project

Jacobi%20nome

AdvancedHelp

(0.001 seconds)

21—30 of 215 matching pages

21: 19.5 Maclaurin and Related Expansions
For Jacobi’s nome q :
19.5.5 q = exp ( π K ( k ) / K ( k ) ) = r + 8 r 2 + 84 r 3 + 992 r 4 + , r = 1 16 k 2 , 0 k 1 .
19.5.6 q = λ + 2 λ 5 + 15 λ 9 + 150 λ 13 + 1707 λ 17 + , 0 k 1 ,
19.5.8 K ( k ) = π 2 ( 1 + 2 n = 1 q n 2 ) 2 , | q | < 1 ,
22: 22.6 Elementary Identities
22.6.2 1 + cs 2 ( z , k ) = k 2 + ds 2 ( z , k ) = ns 2 ( z , k ) ,
22.6.5 sn ( 2 z , k ) = 2 sn ( z , k ) cn ( z , k ) dn ( z , k ) 1 k 2 sn 4 ( z , k ) ,
22.6.8 cd ( 2 z , k ) = cd 2 ( z , k ) k 2 sd 2 ( z , k ) nd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
§22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
Table 22.6.1: Jacobi’s imaginary transformation of Jacobian elliptic functions.
sn ( i z , k ) = i sc ( z , k ) dc ( i z , k ) = dn ( z , k )
23: 20.10 Integrals
20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
24: 23.6 Relations to Other Functions
23.6.2 e 1 = π 2 12 ω 1 2 ( θ 2 4 ( 0 , q ) + 2 θ 4 4 ( 0 , q ) ) ,
23.6.3 e 2 = π 2 12 ω 1 2 ( θ 2 4 ( 0 , q ) θ 4 4 ( 0 , q ) ) ,
23.6.4 e 3 = π 2 12 ω 1 2 ( 2 θ 2 4 ( 0 , q ) + θ 4 4 ( 0 , q ) ) .
Similar results for the other nine Jacobi functions can be constructed with the aid of the transformations given by Table 22.4.3. For representations of the Jacobi functions sn , cn , and dn as quotients of σ -functions see Lawden (1989, §§6.2, 6.3). …
25: 22.13 Derivatives and Differential Equations
22.13.1 ( d d z sn ( z , k ) ) 2 = ( 1 sn 2 ( z , k ) ) ( 1 k 2 sn 2 ( z , k ) ) ,
22.13.2 ( d d z cn ( z , k ) ) 2 = ( 1 cn 2 ( z , k ) ) ( k 2 + k 2 cn 2 ( z , k ) ) ,
22.13.3 ( d d z dn ( z , k ) ) 2 = ( 1 dn 2 ( z , k ) ) ( dn 2 ( z , k ) k 2 ) .
22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
22.13.10 ( d d z ns ( z , k ) ) 2 = ( ns 2 ( z , k ) k 2 ) ( ns 2 ( z , k ) 1 ) ,
26: 22.4 Periods, Poles, and Zeros
For example, the poles of sn ( z , k ) , abbreviated as sn in the following tables, are at z = 2 m K + ( 2 n + 1 ) i K . … Then: (a) In any lattice unit cell p q ( z , k ) has a simple zero at z = p and a simple pole at z = q . (b) The difference between p and the nearest q is a half-period of p q ( z , k ) . This half-period will be plus or minus a member of the triple K , i K , K + i K ; the other two members of this triple are quarter periods of p q ( z , k ) . … For example, sn ( z + K , k ) = cd ( z , k ) . …
27: 18.7 Interrelations and Limit Relations
Ultraspherical and Jacobi
Chebyshev, Ultraspherical, and Jacobi
Legendre, Ultraspherical, and Jacobi
Jacobi Laguerre
Jacobi Hermite
28: 22.14 Integrals
See §22.16(i) for am ( z , k ) . …
22.14.15 cn ( x , k ) d x sn 2 ( x , k ) = dn ( x , k ) sn ( x , k ) .
29: 22.7 Landen Transformations
22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
22.7.8 dn ( z , k ) = ( 1 k 2 ) ( dn 2 ( z / ( 1 + k 2 ) , k 2 ) + k 2 ) k 2 2 dn ( z / ( 1 + k 2 ) , k 2 ) .
30: 18.5 Explicit Representations
§18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
Jacobi
For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). … The first of each of equations (18.5.7) and (18.5.8) can be regarded as definitions of P n ( α , β ) ( x ) when the conditions α > 1 and β > 1 are not satisfied. …For this reason, and also in the interest of simplicity, in the case of the Jacobi polynomials P n ( α , β ) ( x ) we assume throughout this chapter that α > 1 and β > 1 , unless stated otherwise. …