About the Project

IEEE standard

AdvancedHelp

(0.002 seconds)

6 matching pages

1: Bibliography I
  • IEEE (2008) IEEE Standard for Floating-Point Arithmetic. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2015) IEEE Standard for Interval Arithmetic: IEEE Std 1788-2015. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2018) IEEE Standard for Interval Arithmetic: IEEE Std 1788.1-2017. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2019) IEEE International Standard for Information Technology—Microprocessor Systems—Floating-Point arithmetic: IEEE Std 754-2019. The Institute of Electrical and Electronics Engineers, Inc..
  • 2: 3.1 Arithmetics and Error Measures
    IEEE Standard
    The current floating point arithmetic standard is IEEE 754-2019 IEEE (2019), a minor technical revision of IEEE 754-2008 IEEE (2008), which was adopted in 2011 by the International Standards Organization as ISO/IEC/IEEE 60559. … For interval arithmetic, one should refer to the IEEE Standards for Interval Arithmetic IEEE (2015, 2018). …
    3: Errata
  • Section 3.1

    In ¶IEEE Standard (in §3.1(i)), the description was modified to reflect the most recent IEEE 754-2019 Floating-Point Arithmetic Standard IEEE (2019). In the new standard, single, double and quad floating-point precisions are replaced with new standard names of binary32, binary64 and binary128. Figure 3.1.1 has been expanded to include the binary128 floating-point memory positions and the caption has been updated using the terminology of the 2019 standard. A sentence at the end of Subsection 3.1(ii) has been added referring readers to the IEEE Standards for Interval Arithmetic IEEE (2015, 2018).

    Suggested by Nicola Torracca.

  • 4: Publications
  • D. W. Lozier (1997) Toward a Revised NBS Handbook of Mathematical Functions, Technical Report NISTIR 6072 (September 1997), National Institute of Standards and Technology. PDF
  • D. W. Lozier, B. R. Miller and B. V. Saunders (1999) Design of a Digital Mathematical Library for Science, Technology and Education, Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries (IEEE ADL ’99, Baltimore, Maryland, May 19, 1999). PDF
  • B. V. Saunders and Q. Wang (1999) Using Numerical Grid Generation to Facilitate 3D Visualization of Complicated Mathematical Functions, Technical Report NISTIR 6413 (November 1999), National Institute of Standards and Technology. PDF
  • Q. Wang and B. V. Saunders (1999) Interactive 3D Visualization of Mathematical Functions Using VRML, Technical Report NISTIR 6289 (February 1999), National Institute of Standards and Technology. PDF
  • R. F. Boisvert and D. W. Lozier (2001) Handbook of Mathematical Functions, in A Century of Excellence in Measurements Standards and Technology (D. R. Lide, ed.), CRC Press, pp. 135–139. PDF
  • 5: Bibliography L
  • D. R. Lehman and J. S. O’Connell (1973) Graphical Recoupling of Angular Momenta. Technical report U.S. Government Printing Office, National Bureau of Standards, Washington, D.C..
  • J. L. López (2000) Asymptotic expansions of symmetric standard elliptic integrals. SIAM J. Math. Anal. 31 (4), pp. 754–775.
  • D. W. Lozier (1980) Numerical Solution of Linear Difference Equations. NBSIR Technical Report 80-1976, National Bureau of Standards, Gaithersburg, MD 20899.
  • D. W. Lozier (1993) An underflow-induced graphics failure solved by SLI arithmetic. In IEEE Symposium on Computer Arithmetic, E. E. Swartzlander, M. J. Irwin, and G. A. Jullien (Eds.), Washington, D.C., pp. 10–17.
  • R. J. Lyman and W. W. Edmonson (2001) Linear prediction of bandlimited processes with flat spectral densities. IEEE Trans. Signal Process. 49 (7), pp. 1564–1569.
  • 6: Bibliography M
  • A. Michaeli (1996) Asymptotic analysis of edge-excited currents on a convex face of a perfectly conducting wedge under overlapping penumbra region conditions. IEEE Trans. Antennas and Propagation 44 (1), pp. 97–101.
  • J. C. P. Miller (1950) On the choice of standard solutions for a homogeneous linear differential equation of the second order. Quart. J. Mech. Appl. Math. 3 (2), pp. 225–235.
  • J. C. P. Miller (1952) On the choice of standard solutions to Weber’s equation. Proc. Cambridge Philos. Soc. 48, pp. 428–435.
  • G. W. Morgenthaler and H. Reismann (1963) Zeros of first derivatives of Bessel functions of the first kind, J n ( x ) , 21 n 51 , 0 x 100 . J. Res. Nat. Bur. Standards Sect. B 67B (3), pp. 181–183.