About the Project

Heun functions

AdvancedHelp

(0.003 seconds)

31—38 of 38 matching pages

31: Bibliography D
  • H. T. Davis (1933) Tables of Higher Mathematical Functions I. Principia Press, Bloomington, Indiana.
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • A. Dienstfrey and J. Huang (2006) Integral representations for elliptic functions. J. Math. Anal. Appl. 316 (1), pp. 142–160.
  • A. J. Durán (1993) Functions with given moments and weight functions for orthogonal polynomials. Rocky Mountain J. Math. 23, pp. 87–104.
  • 32: Bibliography M
  • I. G. Macdonald (1990) Hypergeometric Functions.
  • R. S. Maier (2005) On reducing the Heun equation to the hypergeometric equation. J. Differential Equations 213 (1), pp. 171–203.
  • R. S. Maier (2007) The 192 solutions of the Heun equation. Math. Comp. 76 (258), pp. 811–843.
  • B. Markman (1965) Contribution no. 14. The Riemann zeta function. BIT 5, pp. 138–141.
  • F. Matta and A. Reichel (1971) Uniform computation of the error function and other related functions. Math. Comp. 25 (114), pp. 339–344.
  • 33: Bibliography L
  • V. Laĭ (1994) The two-point connection problem for differential equations of the Heun class. Teoret. Mat. Fiz. 101 (3), pp. 360–368 (Russian).
  • W. Lay, K. Bay, and S. Yu. Slavyanov (1998) Asymptotic and numeric study of eigenvalues of the double confluent Heun equation. J. Phys. A 31 (42), pp. 8521–8531.
  • W. Lay and S. Yu. Slavyanov (1998) The central two-point connection problem for the Heun class of ODEs. J. Phys. A 31 (18), pp. 4249–4261.
  • W. Lay and S. Yu. Slavyanov (1999) Heun’s equation with nearby singularities. Proc. Roy. Soc. London Ser. A 455, pp. 4347–4361.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • 34: Bibliography R
  • H. Rademacher (1938) On the partition function p(n). Proc. London Math. Soc. (2) 43 (4), pp. 241–254.
  • E. D. Rainville (1960) Special Functions. The Macmillan Co., New York.
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • A. Ronveaux (Ed.) (1995) Heun’s Differential Equations. The Clarendon Press Oxford University Press, New York.
  • 35: Bibliography P
  • E. Pairman (1919) Tables of Digamma and Trigamma Functions. In Tracts for Computers, No. 1, K. Pearson (Ed.),
  • R. B. Paris (2002c) Exponential asymptotics of the Mittag-Leffler function. Proc. Roy. Soc. London Ser. A 458, pp. 3041–3052.
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • K. Pearson (Ed.) (1968) Tables of the Incomplete Beta-function. 2nd edition, Published for the Biometrika Trustees at the Cambridge University Press, Cambridge.
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • 36: Bibliography T
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1992a) Asymptotic inversion of incomplete gamma functions. Math. Comp. 58 (198), pp. 755–764.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • O. I. Tolstikhin and M. Matsuzawa (2001) Hyperspherical elliptic harmonics and their relation to the Heun equation. Phys. Rev. A 63 (032510), pp. 1–8.
  • Go. Torres-Vega, J. D. Morales-Guzmán, and A. Zúñiga-Segundo (1998) Special functions in phase space: Mathieu functions. J. Phys. A 31 (31), pp. 6725–6739.
  • 37: Errata
  • Equations (31.3.10), (31.3.11)
    31.3.10 z α H ( 1 a , q a α ( β ϵ ) α a ( β δ ) ; α , α γ + 1 , α β + 1 , δ ; 1 z )
    31.3.11 z β H ( 1 a , q a β ( α ϵ ) β a ( α δ ) ; β , β γ + 1 , β α + 1 , δ ; 1 z )

    In both equations, the second entry in the H has been corrected with an extra minus sign.

  • Equations (31.16.2) and (31.16.3)
    31.16.2
    x y = a sin 2 θ cos 2 ϕ ,
    ( x 1 ) ( y 1 ) = ( 1 a ) sin 2 θ sin 2 ϕ ,
    ( x a ) ( y a ) = a ( a 1 ) cos 2 θ
    31.16.3 A 0 = n ! ( γ + δ ) n 𝐻𝑝 n , m ( 1 ) , Q 0 A 0 + R 0 A 1 = 0

    Originally x , y were incorrectly defined by the set of equations (31.16.2), given previously as “ x = sin 2 θ cos 2 ϕ ,   y = sin 2 θ sin 2 ϕ ”. In fact, x , y are implicitly defined by the corrected set of equations. In (31.16.3), the initial data A 0 , previously missing, has now been included.

  • Paragraph Confluent Hypergeometric Functions (in §10.16)

    Confluent hypergeometric functions were incorrectly linked to the definitions of the Kummer confluent hypergeometric and parabolic cylinder functions. However, to the eye, the functions appeared correct. The links were corrected.

  • Equation (19.25.37)

    The Weierstrass zeta function was incorrectly linked to the definition of the Riemann zeta function. However, to the eye, the function appeared correct. The link was corrected.

  • The Handbook of Mathematical Functions was published, and the Digital Library of Mathematical Functions was released.
    38: Bibliography H
  • P. I. Hadži (1969) Certain integrals that contain a probability function and degenerate hypergeometric functions. Bul. Akad. S̆tiince RSS Moldoven 1969 (2), pp. 40–47 (Russian).
  • P. I. Hadži (1970) Some integrals that contain a probability function and hypergeometric functions. Bul. Akad. Štiince RSS Moldoven 1970 (1), pp. 49–62 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.