About the Project

Heun%20operator

AdvancedHelp

(0.002 seconds)

11—20 of 195 matching pages

11: 31.3 Basic Solutions
§31.3(i) Fuchs–Frobenius Solutions at z = 0
H ( a , q ; α , β , γ , δ ; z ) denotes the solution of (31.2.1) that corresponds to the exponent 0 at z = 0 and assumes the value 1 there. …
§31.3(ii) Fuchs–Frobenius Solutions at Other Singularities
§31.3(iii) Equivalent Expressions
For example, H ( a , q ; α , β , γ , δ ; z ) is equal to …
12: 31.18 Methods of Computation
§31.18 Methods of Computation
The computation of the accessory parameter for the Heun functions is carried out via the continued-fraction equations (31.4.2) and (31.11.13) in the same way as for the Mathieu, Lamé, and spheroidal wave functions in Chapters 2830.
13: Bibliography K
  • E. G. Kalnins and W. Miller (1991a) Hypergeometric expansions of Heun polynomials. SIAM J. Math. Anal. 22 (5), pp. 1450–1459.
  • E. G. Kalnins and W. Miller (1991b) Addendum: “Hypergeometric expansions of Heun polynomials”. SIAM J. Math. Anal. 22 (6), pp. 1803.
  • E. G. Kalnins and W. Miller (1993) Orthogonal Polynomials on n -spheres: Gegenbauer, Jacobi and Heun. In Topics in Polynomials of One and Several Variables and their Applications, pp. 299–322.
  • A. Ya. Kazakov and S. Yu. Slavyanov (1996) Integral equations for special functions of Heun class. Methods Appl. Anal. 3 (4), pp. 447–456.
  • T. H. Koornwinder (2006) Lowering and Raising Operators for Some Special Orthogonal Polynomials. In Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., Vol. 417, pp. 227–238.
  • 14: Gerhard Wolf
    Wolf has published papers on Mathieu functions, orthogonal polynomials, and Heun functions. … Schmidt) of the Chapter Double Confluent Heun Equation in the book Heun’s Differential Equations (A. …
    15: 31.7 Relations to Other Functions
    §31.7(i) Reductions to the Gauss Hypergeometric Function
    31.7.1 F 1 2 ( α , β ; γ ; z ) = H ( 1 , α β ; α , β , γ , δ ; z ) = H ( 0 , 0 ; α , β , γ , α + β + 1 γ ; z ) = H ( a , a α β ; α , β , γ , α + β + 1 γ ; z ) .
    Other reductions of H to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = α β p . …
    31.7.2 H ( 2 , α β ; α , β , γ , α + β 2 γ + 1 ; z ) = F 1 2 ( 1 2 α , 1 2 β ; γ ; 1 ( 1 z ) 2 ) ,
    §31.7(ii) Relations to Lamé Functions
    16: 31.16 Mathematical Applications
    §31.16 Mathematical Applications
    §31.16(i) Uniformization Problem for Heun’s Equation
    It describes the monodromy group of Heun’s equation for specific values of the accessory parameter.
    §31.16(ii) Heun Polynomial Products
    17: Bibliography R
  • M. Reed and B. Simon (1978) Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators. Academic Press, New York.
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • A. Ronveaux (Ed.) (1995) Heun’s Differential Equations. The Clarendon Press Oxford University Press, New York.
  • G. Rota, D. Kahaner, and A. Odlyzko (1973) On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, pp. 684–760.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 18: 31.9 Orthogonality
    §31.9(i) Single Orthogonality
    For corresponding orthogonality relations for Heun functions (§31.4) and Heun polynomials (§31.5), see Lambe and Ward (1934), Erdélyi (1944), Sleeman (1966a), and Ronveaux (1995, Part A, pp. 59–64).
    §31.9(ii) Double Orthogonality
    Heun polynomials w j = 𝐻𝑝 n j , m j , j = 1 , 2 , satisfy …and the integration paths 1 , 2 are Pochhammer double-loop contours encircling distinct pairs of singularities { 0 , 1 } , { 0 , a } , { 1 , a } . …
    19: Bibliography D
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • B. Deconinck and J. N. Kutz (2006) Computing spectra of linear operators using the Floquet-Fourier-Hill method. J. Comput. Phys. 219 (1), pp. 296–321.
  • N. Dunford and J. T. Schwartz (1988) Linear operators. Part II. Wiley Classics Library, John Wiley & Sons, Inc., New York.
  • C. F. Dunkl (1989) Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311 (1), pp. 167–183.
  • 20: Bibliography S
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • B. D. Sleeman (1966a) Some Boundary Value Problems Associated with the Heun Equation. Ph.D. Thesis, London University.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • A. O. Smirnov (2002) Elliptic Solitons and Heun’s Equation. In The Kowalevski Property (Leeds, UK, 2000), V. B. Kuznetsov (Ed.), CRM Proc. Lecture Notes, Vol. 32, pp. 287–306.
  • H. Suzuki, E. Takasugi, and H. Umetsu (1998) Perturbations of Kerr-de Sitter black holes and Heun’s equations. Progr. Theoret. Phys. 100 (3), pp. 491–505.