About the Project

Hermite polynomials

AdvancedHelp

(0.006 seconds)

21—30 of 59 matching pages

21: 13.6 Relations to Other Functions
Hermite Polynomials
13.6.16 M ( n , 1 2 , z 2 ) = ( 1 ) n n ! ( 2 n ) ! H 2 n ( z ) ,
13.6.17 M ( n , 3 2 , z 2 ) = ( 1 ) n n ! ( 2 n + 1 ) ! 2 z H 2 n + 1 ( z ) ,
13.6.18 U ( 1 2 1 2 n , 3 2 , z 2 ) = 2 n z 1 H n ( z ) .
22: 18.21 Hahn Class: Interrelations
Charlier Hermite
18.21.9 lim a ( 2 a ) 1 2 n C n ( ( 2 a ) 1 2 x + a ; a ) = ( 1 ) n H n ( x ) .
18.21.13 n ! lim λ λ n / 2 P n ( λ ) ( x λ 1 / 2 ; π / 2 ) = H n ( x ) .
See accompanying text
Figure 18.21.1: Askey scheme. The number of free real parameters is zero for Hermite polynomials. … Magnify
23: 18.13 Continued Fractions
Hermite
H n ( x ) is the denominator of the n th approximant to: …
24: 18.38 Mathematical Applications
Integrable Systems
18.38.1 V n ( x ) = 2 n H n + 1 ( x ) H n 1 ( x ) ( H n ( x ) ) 2 ,
with H n ( x ) as in §18.3, satisfies the Toda equation …
Random Matrix Theory
Hermite polynomials (and their Freud-weight analogs (§18.32)) play an important role in random matrix theory. …
25: 18.12 Generating Functions
Hermite
18.12.15 e 2 x z z 2 = n = 0 H n ( x ) n ! z n ,
18.12.16 e x z 1 2 z 2 = n = 0 𝐻𝑒 n ( x ) n ! z n ,
18.12.17 1 + 2 x z + 4 z 2 ( 1 + 4 z 2 ) 3 2 exp ( 4 x 2 z 2 1 + 4 z 2 ) = n = 0 H n ( x ) n / 2 ! z n , | z | < 1 .
26: 32.10 Special Function Solutions
§32.10(iv) Fourth Painlevé Equation
When a + 1 2 is zero or a negative integer the U parabolic cylinder functions reduce to Hermite polynomials18.3) times an exponential function; thus
32.10.20 w ( z ; m , 2 ( m 1 ) 2 ) = H m 1 ( z ) H m 1 ( z ) , m = 1 , 2 , 3 , ,
32.10.21 w ( z ; m , 2 ( m + 1 ) 2 ) = 2 z + H m ( z ) H m ( z ) , m = 0 , 1 , 2 , .
27: 12.1 Special Notation
Unless otherwise noted, primes indicate derivatives with respect to the variable, and fractional powers take their principal values. … Whittaker’s notation D ν ( z ) is useful when ν is a nonnegative integer (Hermite polynomial case).
28: 18.28 Askey–Wilson Class
§18.28(vi) Continuous q -Hermite Polynomials
§18.28(vii) Continuous q 1 -Hermite Polynomials
18.28.18 h n ( sinh t | q ) = = 0 n q 1 2 ( + 1 ) ( q n ; q ) ( q ; q ) e ( n 2 ) t = e n t ϕ 1 1 ( q n 0 ; q , q e 2 t ) = i n H n ( i sinh t | q 1 ) .
For continuous q 1 -Hermite polynomials the orthogonality measure is not unique. …
18.28.33 lim q 1 H n ( x ( 1 q ) / 2 | q ) ( ( 1 q ) / 2 ) n / 2 = H n ( x ) .
29: 18.14 Inequalities
Hermite
Hermite
18.14.13 ( H n ( x ) ) 2 H n 1 ( x ) H n + 1 ( x ) , < x < .
Hermite
The successive maxima of | H n ( x ) | form a decreasing sequence for x 0 , and an increasing sequence for x 0 . …
30: 18.16 Zeros
§18.16(v) Hermite
All zeros of H n ( x ) lie in the open interval ( 2 n + 1 , 2 n + 1 ) . … For an asymptotic expansion of x n , m as n that applies uniformly for m = 1 , 2 , , 1 2 n , see Olver (1959, §14(i)). … Lastly, in view of (18.7.19) and (18.7.20), results for the zeros of L n ( ± 1 2 ) ( x ) lead immediately to results for the zeros of H n ( x ) . …
18.16.21 Disc ( H n ) = 2 3 2 n ( n 1 ) j = 1 n j j .