About the Project

Glaisher constant

AdvancedHelp

(0.002 seconds)

31—40 of 441 matching pages

31: 18.25 Wilson Class: Definitions
Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials W n ( x ; a , b , c , d ) , continuous dual Hahn polynomials S n ( x ; a , b , c ) , Racah polynomials R n ( x ; α , β , γ , δ ) , and dual Hahn polynomials R n ( x ; γ , δ , N ) . …
γ , δ > 1 , β > N + γ .
γ , δ > 1 , β < N δ .
γ , δ < N , β < γ + 1 .
The first four sets imply γ + δ > 2 , and the last four imply γ + δ < 2 N . …
32: 8.14 Integrals
8.14.1 0 e a x γ ( b , x ) Γ ( b ) d x = ( 1 + a ) b a , a > 0 , b > 1 ,
8.14.2 0 e a x Γ ( b , x ) d x = Γ ( b ) 1 ( 1 + a ) b a , a > 1 , b > 1 .
8.14.3 0 x a 1 γ ( b , x ) d x = Γ ( a + b ) a , a < 0 , ( a + b ) > 0 ,
8.14.4 0 x a 1 Γ ( b , x ) d x = Γ ( a + b ) a , a > 0 , ( a + b ) > 0 ,
8.14.5 0 x a 1 e s x γ ( b , x ) d x = Γ ( a + b ) b ( 1 + s ) a + b F ( 1 , a + b ; 1 + b ; 1 / ( 1 + s ) ) , s > 0 , ( a + b ) > 0 ,
33: 30.16 Methods of Computation
For m = 2 , n = 4 , γ 2 = 10 , … If | γ 2 | is large, then we can use the asymptotic expansions referred to in §30.9 to approximate 𝖯𝗌 n m ( x , γ 2 ) . … If λ n m ( γ 2 ) is known, then 𝖯𝗌 n m ( x , γ 2 ) can be found by summing (30.8.1). The coefficients a n , r m ( γ 2 ) are computed as the recessive solution of (30.8.4) (§3.6), and normalized via (30.8.5). … The coefficients a n , k m ( γ 2 ) calculated in §30.16(ii) can be used to compute S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 from (30.11.3) as well as the connection coefficients K n m ( γ ) from (30.11.10) and (30.11.11). …
34: 4.34 Derivatives and Differential Equations
4.34.12 w = ( 1 / a ) sinh ( a z + c ) ,
4.34.13 w = ( 1 / a ) cosh ( a z + c ) ,
4.34.14 w = ( 1 / a ) coth ( a z + c ) ,
where A , B , c are arbitrary constants. …
35: 8.13 Zeros
§8.13(i) x -Zeros of γ ( a , x )
The function γ ( a , x ) has no real zeros for a 0 . …
§8.13(ii) λ -Zeros of γ ( a , λ a ) and Γ ( a , λ a )
For information on the distribution and computation of zeros of γ ( a , λ a ) and Γ ( a , λ a ) in the complex λ -plane for large values of the positive real parameter a see Temme (1995a).
§8.13(iii) a -Zeros of γ ( a , x )
36: 30.2 Differential Equations
The equation contains three real parameters λ , γ 2 , and μ . In applications involving prolate spheroidal coordinates γ 2 is positive, in applications involving oblate spheroidal coordinates γ 2 is negative; see §§30.13, 30.14. … With ζ = γ z Equation (30.2.1) changes to … If γ = 0 , Equation (30.2.1) is the associated Legendre differential equation; see (14.2.2). …If γ = 0 , Equation (30.2.4) is satisfied by spherical Bessel functions; see (10.47.1).
37: 30.17 Tables
  • Stratton et al. (1956) tabulates quantities closely related to λ n m ( γ 2 ) and a n , k m ( γ 2 ) for 0 m 8 , m n 8 , 64 γ 2 64 . Precision is 7S.

  • Hanish et al. (1970) gives λ n m ( γ 2 ) and S n m ( j ) ( z , γ ) , j = 1 , 2 , and their first derivatives, for 0 m 2 , m n m + 49 , 1600 γ 2 1600 . The range of z is given by 1 z 10 if γ 2 > 0 , or z = i ξ , 0 ξ 2 if γ 2 < 0 . Precision is 18S.

  • EraŠevskaja et al. (1973, 1976) gives S m ( j ) ( i y , i c ) , S m ( j ) ( z , γ ) and their first derivatives for j = 1 , 2 , 0.5 c 8 , y = 0 , 0.5 , 1 , 1.5 , 0.5 γ 8 , z = 1.01 , 1.1 , 1.4 , 1.8 . Precision is 15S.

  • Van Buren et al. (1975) gives λ n 0 ( γ 2 ) , 𝖯𝗌 n 0 ( x , γ 2 ) for 0 n 49 , 1600 γ 2 1600 , 1 x 1 . Precision is 8S.

  • 38: 30.11 Radial Spheroidal Wave Functions
    Then solutions of (30.2.1) with μ = m and λ = λ n m ( γ 2 ) are given by …Here a n , k m ( γ 2 ) is defined by (30.8.2) and (30.8.6), and … For fixed γ , as z in the sector | ph z | π δ ( < π ), … where …
    39: 5.4 Special Values and Extrema
    Γ ( 1 ) = 1 ,
    n ! = Γ ( n + 1 ) .
    5.4.11 Γ ( 1 ) = γ .
    ψ ( 1 ) = γ ,
    5.4.14 ψ ( n + 1 ) = k = 1 n 1 k γ ,
    40: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
    31.5.1 [ 0 a γ 0 0 P 1 Q 1 R 1 0 0 P 2 Q 2 R n 1 0 0 P n Q n ] ,
    31.5.2 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) = H ( a , q n , m ; n , β , γ , δ ; z )