About the Project

Gegenbauer polynomials

AdvancedHelp

(0.002 seconds)

11—20 of 27 matching pages

11: 18.5 Explicit Representations
Table 18.5.1: Classical OP’s: Rodrigues formulas (18.5.5).
p n ( x ) w ( x ) F ( x ) κ n
C n ( λ ) ( x ) ( 1 x 2 ) λ 1 2 1 x 2 ( 2 ) n ( λ + 1 2 ) n n ! ( 2 λ ) n
18.5.10 C n ( λ ) ( x ) = = 0 n / 2 ( 1 ) ( λ ) n ! ( n 2 ) ! ( 2 x ) n 2 = ( 2 x ) n ( λ ) n n ! F 1 2 ( 1 2 n , 1 2 n + 1 2 1 λ n ; 1 x 2 ) ,
18.5.11 C n ( λ ) ( cos θ ) = = 0 n ( λ ) ( λ ) n ! ( n ) ! cos ( ( n 2 ) θ ) = e i n θ ( λ ) n n ! F 1 2 ( n , λ 1 λ n ; e 2 i θ ) .
Similarly in the cases of the ultraspherical polynomials C n ( λ ) ( x ) and the Laguerre polynomials L n ( α ) ( x ) we assume that λ > 1 2 , λ 0 , and α > 1 , unless stated otherwise. …
12: 1.10 Functions of a Complex Variable
1.10.28 F ( x , λ ; z ) = ( 1 2 x z + z 2 ) λ = n = 0 C n ( λ ) ( x ) z n , | z | < 1 .
1.10.29 n = 0 d d x C n ( λ ) ( x ) z n = 2 λ z ( 1 2 x z + z 2 ) λ 1 = n = 0 2 λ C n ( λ + 1 ) ( x ) z n + 1 ,
and hence d d x C n ( λ ) ( x ) = 2 λ C n 1 ( λ + 1 ) ( x ) , that is (18.9.19). The recurrence relation for C n ( λ ) ( x ) in §18.9(i) follows from ( 1 2 x z + z 2 ) z F ( x , λ ; z ) = 2 λ ( x z ) F ( x , λ ; z ) , and the contour integral representation for C n ( λ ) ( x ) in §18.10(iii) is just (1.10.27).
13: 10.23 Sums
10.23.8 𝒞 ν ( w ) w ν = 2 ν Γ ( ν ) k = 0 ( ν + k ) 𝒞 ν + k ( u ) u ν J ν + k ( v ) v ν C k ( ν ) ( cos α ) , ν 0 , 1 , , | v e ± i α | < | u | ,
where C k ( ν ) ( cos α ) is Gegenbauer’s polynomial18.3). …
10.23.9 e i v cos α = Γ ( ν ) ( 1 2 v ) ν k = 0 ( ν + k ) i k J ν + k ( v ) C k ( ν ) ( cos α ) , ν 0 , 1 , .
14: 18.3 Definitions
Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
Ultraspherical (Gegenbauer) C n ( λ ) ( x ) ( 1 , 1 ) ( 1 x 2 ) λ 1 2 2 1 2 λ π Γ ( n + 2 λ ) ( n + λ ) ( Γ ( λ ) ) 2 n ! 2 n ( λ ) n n ! 0 λ > 1 2 , λ 0
15: 15.9 Relations to Other Functions
Gegenbauer (or Ultraspherical)
This is a generalization of Gegenbauer (or ultraspherical) polynomials18.3). …
16: 18.11 Relations to Other Functions
18.11.1 𝖯 n m ( x ) = ( 1 2 ) m ( 2 ) m ( 1 x 2 ) 1 2 m C n m ( m + 1 2 ) ( x ) = ( n + 1 ) m ( 2 ) m ( 1 x 2 ) 1 2 m P n m ( m , m ) ( x ) , 0 m n .
17: 18.35 Pollaczek Polynomials
18.35.8 P n ( λ ) ( x ; 0 , 0 ) = C n ( λ ) ( x ) ,
For the ultraspherical polynomials C n ( λ ) ( x ) , the Meixner–Pollaczek polynomials P n ( λ ) ( x ; ϕ ) and the associated Meixner–Pollaczek polynomials 𝒫 n λ ( x ; ϕ , c ) see §§18.3, 18.19 and 18.30(v), respectively. …
18: 18.15 Asymptotic Approximations
18.15.10 C n ( λ ) ( cos θ ) = 2 2 λ Γ ( λ + 1 2 ) π 1 2 Γ ( λ + 1 ) ( 2 λ ) n ( λ + 1 ) n ( m = 0 M 1 ( λ ) m ( 1 λ ) m m ! ( n + λ + 1 ) m cos θ n , m ( 2 sin θ ) m + λ + O ( 1 n M ) ) ,
Asymptotic expansions for C n ( λ ) ( cos θ ) can be obtained from the results given in §18.15(i) by setting α = β = λ 1 2 and referring to (18.7.1). …
19: 10.60 Sums
Then with P n again denoting the Legendre polynomial of degree n ,
10.60.1 cos w w = n = 0 ( 2 n + 1 ) 𝗃 n ( v ) 𝗒 n ( u ) P n ( cos α ) , | v e ± i α | < | u | .
10.60.2 sin w w = n = 0 ( 2 n + 1 ) 𝗃 n ( v ) 𝗃 n ( u ) P n ( cos α ) .
10.60.7 e i z cos α = n = 0 ( 2 n + 1 ) i n 𝗃 n ( z ) P n ( cos α ) ,
10.60.8 e z cos α = n = 0 ( 2 n + 1 ) 𝗂 n ( 1 ) ( z ) P n ( cos α ) ,
20: 3.5 Quadrature
Table 3.5.17_5: Recurrence coefficients in (3.5.30) and (3.5.30_5) for monic versions p n ( x ) and orthonormal versions q n ( x ) of the classical orthogonal polynomials.
p n ( x ) q n ( x ) α n β n h 0
1 k n C n ( λ ) ( x ) 1 h n C n ( λ ) ( x ) 0 n ( n + 2 λ 1 ) 4 ( n + λ ) ( n + λ 1 ) π Γ ( λ + 1 2 ) Γ ( λ + 1 )