About the Project

Gauss sum

AdvancedHelp

(0.003 seconds)

11—20 of 68 matching pages

11: 15.16 Products
β–Ί β–Ί
15.16.2 ( 1 z ) a + b c ⁒ F ⁑ ( 2 ⁒ a , 2 ⁒ b ; 2 ⁒ c 1 ; z ) = s = 0 A s ⁒ z s , | z | < 1 .
β–Ί
15.16.3 F ⁑ ( a , b c ; z ) ⁒ F ⁑ ( a , b c ; ΢ ) = s = 0 ( a ) s ⁒ ( b ) s ⁒ ( c a ) s ⁒ ( c b ) s ( c ) s ⁒ ( c ) 2 ⁒ s ⁒ s ! ⁒ ( z ⁒ ΢ ) s ⁒ F ⁑ ( a + s , b + s c + 2 ⁒ s ; z + ΢ z ⁒ ΢ ) , | z | < 1 , | ΢ | < 1 , | z + ΢ z ⁒ ΢ | < 1 .
12: 16.10 Expansions in Series of F q p Functions
β–Ί
16.10.1 F q + s p + r ⁑ ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ⁒ ΞΆ ) = k = 0 ( 𝐚 ) k ⁒ ( Ξ± ) k ⁒ ( Ξ² ) k ⁒ ( z ) k ( 𝐛 ) k ⁒ ( Ξ³ + k ) k ⁒ k ! ⁒ F q + 1 p + 2 ⁑ ( Ξ± + k , Ξ² + k , a 1 + k , , a p + k Ξ³ + 2 ⁒ k + 1 , b 1 + k , , b q + k ; z ) ⁒ F s + 2 r + 2 ⁑ ( k , Ξ³ + k , c 1 , , c r Ξ± , Ξ² , d 1 , , d s ; ΞΆ ) .
β–Ί β–ΊExpansions of the form n = 1 ( ± 1 ) n ⁒ F p + 1 p ⁑ ( 𝐚 ; 𝐛 ; n 2 ⁒ z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).
13: 15.12 Asymptotic Approximations
β–Ί β–Ί
14: Errata
β–Ί
  • Equation (18.38.3)
    18.38.3 m = 0 n P m ( α , 0 ) ⁑ ( x ) = ( α + 2 ) n n ! ⁒ F 2 3 ⁑ ( n , n + α + 2 , 1 2 ⁒ ( α + 1 ) α + 1 , 1 2 ⁒ ( α + 3 ) ; 1 2 ⁒ ( 1 x ) ) 0 , x 1 , α 2 , n = 0 , 1 ,

    This equation was updated to include the value of the sum in terms of the F 2 3 function. Also the constraint was previously 1 x 1 , Ξ± > 1 .

  • β–Ί
  • Subsection 17.7(iii)

    The title of the paragraph which was previously “Andrews’ Terminating q -Analog of (17.7.8)” has been changed to “Andrews’ q -Analog of the Terminating Version of Watson’s F 2 3 Sum (16.4.6)”. The title of the paragraph which was previously “Andrews’ Terminating q -Analog” has been changed to “Andrews’ q -Analog of the Terminating Version of Whipple’s F 2 3 Sum (16.4.7)”.

  • 15: 13.14 Definitions and Basic Properties
    β–Ί
    13.14.6 M κ , μ ⁑ ( z ) = e 1 2 ⁒ z ⁒ z 1 2 + μ ⁒ s = 0 ( 1 2 + μ κ ) s ( 1 + 2 ⁒ μ ) s ⁒ s ! ⁒ z s = z 1 2 + μ ⁒ n = 0 F 1 2 ⁑ ( n , 1 2 + μ κ 1 + 2 ⁒ μ ; 2 ) ⁒ ( 1 2 ⁒ z ) n n ! , 2 ⁒ μ 1 , 2 , 3 , ,
    16: 16.14 Partial Differential Equations
    β–ΊIn addition to the four Appell functions there are 24 other sums of double series that cannot be expressed as a product of two F 1 2 functions, and which satisfy pairs of linear partial differential equations of the second order. …
    17: 35.10 Methods of Computation
    β–ΊFor small values of β€– 𝐓 β€– the zonal polynomial expansion given by (35.8.1) can be summed numerically. … β–ΊSee Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ⁑ ( m ) applied to a generalization of the integral (35.5.8). …
    18: 27.2 Functions
    β–ΊIt can be expressed as a sum over all primes p x : … β–ΊGauss and Legendre conjectured that Ο€ ⁑ ( x ) is asymptotic to x / ln ⁑ x as x : …(See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) … β–Ίthe sum of the k th powers of the positive integers m n that are relatively prime to n . … β–Ίis the sum of the Ξ± th powers of the divisors of n , where the exponent Ξ± can be real or complex. …
    19: 15.10 Hypergeometric Differential Equation
    β–Ί
    15.10.8 F ⁑ ( a , b n ; z ) ⁒ ln ⁑ z k = 1 n 1 ( n 1 ) ! ⁒ ( k 1 ) ! ( n k 1 ) ! ⁒ ( 1 a ) k ⁒ ( 1 b ) k ⁒ ( z ) k + k = 0 ( a ) k ⁒ ( b ) k ( n ) k ⁒ k ! ⁒ z k ⁒ ( ψ ⁑ ( a + k ) + ψ ⁑ ( b + k ) ψ ⁑ ( 1 + k ) ψ ⁑ ( n + k ) ) , a , b n 1 , n 2 , , 0 , 1 , 2 , ,
    β–Ί
    15.10.9 F ⁑ ( m , b n ; z ) ⁒ ln ⁑ z k = 1 n 1 ( n 1 ) ! ⁒ ( k 1 ) ! ( n k 1 ) ! ⁒ ( m + 1 ) k ⁒ ( 1 b ) k ⁒ ( z ) k + k = 0 m ( m ) k ⁒ ( b ) k ( n ) k ⁒ k ! ⁒ z k ⁒ ( ψ ⁑ ( 1 + m k ) + ψ ⁑ ( b + k ) ψ ⁑ ( 1 + k ) ψ ⁑ ( n + k ) ) + ( 1 ) m ⁒ m ! ⁒ k = m + 1 ( k 1 m ) ! ⁒ ( b ) k ( n ) k ⁒ k ! ⁒ z k , a = m , m = 0 , 1 , 2 , ; b n 1 , n 2 , , 0 , 1 , 2 , ,
    β–Ί
    15.10.10 F ⁑ ( m , β„“ n ; z ) ⁒ ln ⁑ z k = 1 n 1 ( n 1 ) ! ⁒ ( k 1 ) ! ( n k 1 ) ! ⁒ ( m + 1 ) k ⁒ ( β„“ + 1 ) k ⁒ ( z ) k + k = 0 β„“ ( m ) k ⁒ ( β„“ ) k ( n ) k ⁒ k ! ⁒ z k ⁒ ( ψ ⁑ ( 1 + m k ) + ψ ⁑ ( 1 + β„“ k ) ψ ⁑ ( 1 + k ) ψ ⁑ ( n + k ) ) + ( 1 ) β„“ ⁒ β„“ ! ⁒ k = β„“ + 1 m ( k 1 β„“ ) ! ⁒ ( m ) k ( n ) k ⁒ k ! ⁒ z k , a = m , m = 0 , 1 , 2 , ; b = β„“ , β„“ = 0 , 1 , 2 , , m .
    20: 16.2 Definition and Analytic Properties
    β–Ί β–Ί
    16.2.4 k = 0 m ( 𝐚 ) k ( 𝐛 ) k ⁒ z k k ! = ( 𝐚 ) m ⁒ z m ( 𝐛 ) m ⁒ m ! ⁒ F p q + 2 ⁑ ( m , 1 , 1 m 𝐛 1 m 𝐚 ; ( 1 ) p + q + 1 z ) .
    β–Ί
    16.2.5 𝐅 q p ⁑ ( 𝐚 ; 𝐛 ; z ) = F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ) / ( Ξ“ ⁑ ( b 1 ) ⁒ β‹― ⁒ Ξ“ ⁑ ( b q ) ) = k = 0 ( a 1 ) k ⁒ β‹― ⁒ ( a p ) k Ξ“ ⁑ ( b 1 + k ) ⁒ β‹― ⁒ Ξ“ ⁑ ( b q + k ) ⁒ z k k ! ;