About the Project

Ferrers board

AdvancedHelp

(0.001 seconds)

21—30 of 62 matching pages

21: 14.5 Special Values
§14.5 Special Values
§14.5(v) μ = 0 , ν = ± 1 2
22: 14.2 Differential Equations
Standard solutions: 𝖯 ν ( ± x ) , 𝖰 ν ( ± x ) , 𝖰 ν 1 ( ± x ) , P ν ( ± x ) , Q ν ( ± x ) , Q ν 1 ( ± x ) . …
§14.2(ii) Associated Legendre Equation
Standard solutions: 𝖯 ν μ ( ± x ) , 𝖯 ν μ ( ± x ) , 𝖰 ν μ ( ± x ) , 𝖰 ν 1 μ ( ± x ) , P ν μ ( ± x ) , P ν μ ( ± x ) , 𝑸 ν μ ( ± x ) , 𝑸 ν 1 μ ( ± x ) . … Ferrers functions and the associated Legendre functions are related to the Legendre functions by the equations 𝖯 ν 0 ( x ) = 𝖯 ν ( x ) , 𝖰 ν 0 ( x ) = 𝖰 ν ( x ) , P ν 0 ( x ) = P ν ( x ) , Q ν 0 ( x ) = Q ν ( x ) , 𝑸 ν 0 ( x ) = 𝑸 ν ( x ) = Q ν ( x ) / Γ ( ν + 1 ) . …
§14.2(iv) Wronskians and Cross-Products
23: 14.6 Integer Order
§14.6 Integer Order
14.6.6 𝖯 ν m ( x ) = ( 1 x 2 ) m / 2 x 1 x 1 𝖯 ν ( x ) ( d x ) m .
24: 14.34 Software
25: Tom M. Apostol
He additionally served as a visiting lecturer for the MAA, and as a member of the MAA Board of Governors. …
26: 14.20 Conical (or Mehler) Functions
Another real-valued solution 𝖰 ^ 1 2 + i τ μ ( x ) of (14.20.1) was introduced in Dunster (1991). … 𝖰 ^ 1 2 + i τ μ ( x ) exists except when μ = 1 2 , 3 2 , and τ = 0 ; compare §14.3(i). …provided that 𝖰 ^ 1 2 + i τ μ ( x ) exists. … Approximations for 𝖯 1 2 + i τ μ ( x ) and 𝖰 ^ 1 2 + i τ μ ( x ) can then be achieved via (14.9.7) and (14.20.3). … For zeros of 𝖯 1 2 + i τ ( x ) see Hobson (1931, §237). …
27: 14.13 Trigonometric Expansions
§14.13 Trigonometric Expansions
14.13.1 𝖯 ν μ ( cos θ ) = 2 μ + 1 ( sin θ ) μ π 1 / 2 k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! sin ( ( ν + μ + 2 k + 1 ) θ ) ,
14.13.2 𝖰 ν μ ( cos θ ) = π 1 / 2 2 μ ( sin θ ) μ k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! cos ( ( ν + μ + 2 k + 1 ) θ ) .
14.13.3 𝖯 n ( cos θ ) = 2 2 n + 2 ( n ! ) 2 π ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) sin ( ( n + 2 k + 1 ) θ ) ,
14.13.4 𝖰 n ( cos θ ) = 2 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) cos ( ( n + 2 k + 1 ) θ ) ,
28: 14.23 Values on the Cut
14.23.5 𝖰 ν μ ( x ) = 1 2 Γ ( ν + μ + 1 ) ( e μ π i / 2 𝑸 ν μ ( x + i 0 ) + e μ π i / 2 𝑸 ν μ ( x i 0 ) ) ,
If cuts are introduced along the intervals ( , 1 ] and [ 1 , ) , then (14.23.4) and (14.23.6) could be used to extend the definitions of 𝖯 ν μ ( x ) and 𝖰 ν μ ( x ) to complex x . …
29: 30.8 Expansions in Series of Ferrers Functions
§30.8 Expansions in Series of Ferrers Functions
where 𝖯 n + 2 k m ( x ) is the Ferrers function of the first kind (§14.3(i)), R = 1 2 ( n m ) , and the coefficients a n , k m ( γ 2 ) are given by …
30.8.9 𝖰𝗌 n m ( x , γ 2 ) = k = N 1 ( 1 ) k a n , k m ( γ 2 ) 𝖯 n + 2 k m ( x ) + k = N ( 1 ) k a n , k m ( γ 2 ) 𝖰 n + 2 k m ( x ) ,
where 𝖯 n m and 𝖰 n m are again the Ferrers functions and N = 1 2 ( n + m ) . …
30: 14.32 Methods of Computation
§14.32 Methods of Computation