About the Project

F. H. Jackson transformations

AdvancedHelp

(0.002 seconds)

21—30 of 418 matching pages

21: 33.3 Graphics
§33.3(i) Line Graphs of the Coulomb Radial Functions F ( η , ρ ) and G ( η , ρ )
See accompanying text
Figure 33.3.1: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 2 . Magnify
See accompanying text
Figure 33.3.2: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 0 . Magnify
33.3.1 M ( η , ρ ) = ( F 2 ( η , ρ ) + G 2 ( η , ρ ) ) 1 / 2 = | H ± ( η , ρ ) | .
§33.3(ii) Surfaces of the Coulomb Radial Functions F 0 ( η , ρ ) and G 0 ( η , ρ )
22: 15.6 Integral Representations
The function 𝐅 ( a , b ; c ; z ) (not F ( a , b ; c ; z ) ) has the following integral representations:
15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
15.6.9 𝐅 ( a , b ; c ; z ) = 0 1 t d 1 ( 1 t ) c d 1 ( 1 z t ) a + b λ 𝐅 ( λ a , λ b d ; z t ) 𝐅 ( a + b λ , λ d c d ; ( 1 t ) z 1 z t ) d t , | ph ( 1 z ) | < π ; λ , c > d > 0 .
23: 33.23 Methods of Computation
§33.8 supplies continued fractions for F / F and H ± / H ± . Combined with the Wronskians (33.2.12), the values of F , G , and their derivatives can be extracted. … Bardin et al. (1972) describes ten different methods for the calculation of F and G , valid in different regions of the ( η , ρ )-plane. … Hull and Breit (1959) and Barnett (1981b) give WKBJ approximations for F 0 and G 0 in the region inside the turning point: ρ < ρ tp ( η , ) .
24: 16.5 Integral Representations and Integrals
In this event, the formal power-series expansion of the left-hand side (obtained from (16.2.1)) is the asymptotic expansion of the right-hand side as z 0 in the sector | ph ( z ) | ( p + 1 q δ ) π / 2 , where δ is an arbitrary small positive constant. …
16.5.2 F q + 1 p + 1 ( a 0 , , a p b 0 , , b q ; z ) = Γ ( b 0 ) Γ ( a 0 ) Γ ( b 0 a 0 ) 0 1 t a 0 1 ( 1 t ) b 0 a 0 1 F q p ( a 1 , , a p b 1 , , b q ; z t ) d t , b 0 > a 0 > 0 ,
Laplace transforms and inverse Laplace transforms of generalized hypergeometric functions are given in Prudnikov et al. (1992a, §3.38) and Prudnikov et al. (1992b, §3.36). …
25: 33.6 Power-Series Expansions in ρ
33.6.1 F ( η , ρ ) = C ( η ) k = + 1 A k ( η ) ρ k ,
33.6.2 F ( η , ρ ) = C ( η ) k = + 1 k A k ( η ) ρ k 1 ,
33.6.4 A k ( η ) = ( i ) k 1 ( k 1 ) ! F 1 2 ( + 1 k , + 1 i η ; 2 + 2 ; 2 ) .
33.6.5 H ± ( η , ρ ) = e ± i θ ( η , ρ ) ( 2 + 1 ) ! Γ ( ± i η ) ( k = 0 ( a ) k ( 2 + 2 ) k k ! ( 2 i ρ ) a + k ( ln ( 2 i ρ ) + ψ ( a + k ) ψ ( 1 + k ) ψ ( 2 + 2 + k ) ) k = 1 2 + 1 ( 2 + 1 ) ! ( k 1 ) ! ( 2 + 1 k ) ! ( 1 a ) k ( 2 i ρ ) a k ) ,
Corresponding expansions for H ± ( η , ρ ) can be obtained by combining (33.6.5) with (33.4.3) or (33.4.4).
26: 32.10 Special Function Solutions
32.10.1 ( w ) n + j = 0 n 1 F j ( w , z ) ( w ) j = 0 ,
where F j ( w , z ) is polynomial in w with coefficients that are rational functions of z . … Solutions for other values of α are derived from w ( z ; ± 1 2 ) by application of the Bäcklund transformations (32.7.1) and (32.7.2). …
32.10.20 w ( z ; m , 2 ( m 1 ) 2 ) = H m 1 ( z ) H m 1 ( z ) , m = 1 , 2 , 3 , ,
32.10.31 ϕ ( ζ ) = C 1 F ( b , a ; b + c ; ζ ) + C 2 ζ b + 1 c F ( a b c + 1 , c + 1 ; 2 b c ; ζ ) ,
27: 13.6 Relations to Other Functions
13.6.1 M ( a , a , z ) = e z ,
13.6.16 M ( n , 1 2 , z 2 ) = ( 1 ) n n ! ( 2 n ) ! H 2 n ( z ) ,
13.6.17 M ( n , 3 2 , z 2 ) = ( 1 ) n n ! ( 2 n + 1 ) ! 2 z H 2 n + 1 ( z ) ,
For the definition of F 0 2 ( a , a b + 1 ; ; z 1 ) when neither a nor a b + 1 is a nonpositive integer see §16.5. …
28: 33.20 Expansions for Small | ϵ |
33.20.3 f ( ϵ , ; r ) = k = 0 ϵ k 𝖥 k ( ; r ) ,
where
33.20.4 𝖥 k ( ; r ) = p = 2 k 3 k ( 2 r ) ( p + 1 ) / 2 C k , p J 2 + 1 + p ( 8 r ) , r > 0 ,
33.20.5 𝖥 k ( ; r ) = p = 2 k 3 k ( 1 ) + 1 + p ( 2 | r | ) ( p + 1 ) / 2 C k , p I 2 + 1 + p ( 8 | r | ) , r < 0 .
where A ( ϵ , ) is given by (33.14.11), (33.14.12), and …
29: 1.13 Differential Equations
Transformation of the Point at Infinity
The substitution ξ = 1 / z in (1.13.1) gives …
Liouville Transformation
Transformation to Liouville normal Form
Equation (1.13.26) with x [ a , b ] may be transformed to the Liouville normal form
30: 18.5 Explicit Representations
In (18.5.4_5) see §26.11 for the Fibonacci numbers F n . … In this equation w ( x ) is as in Table 18.3.1, (reproduced in Table 18.5.1), and F ( x ) , κ n are as in Table 18.5.1. … For the definitions of F 1 2 , F 1 1 , and F 0 2 see §16.2. …
18.5.13 H n ( x ) = n ! = 0 n / 2 ( 1 ) ( 2 x ) n 2 ! ( n 2 ) ! = ( 2 x ) n F 0 2 ( 1 2 n , 1 2 n + 1 2 ; 1 x 2 ) .
H 0 ( x ) = 1 ,