About the Project

Euler numbers

AdvancedHelp

(0.005 seconds)

11—20 of 100 matching pages

11: 17.3 q -Elementary and q -Special Functions
β–Ί
§17.3(iii) Bernoulli Polynomials; Euler and Stirling Numbers
β–Ί
q -Euler Numbers
β–Ί
17.3.8 A m , s ⁑ ( q ) = q ( s m 2 ) + ( s 2 ) ⁒ j = 0 s ( 1 ) j ⁒ q ( j 2 ) ⁒ [ m + 1 j ] q ⁒ ( 1 q s j ) m ( 1 q ) m .
β–ΊThe A m , s ⁑ ( q ) are always polynomials in q , and the a m , s ⁑ ( q ) are polynomials in q for 0 s m . …
12: 24.19 Methods of Computation
β–Ί
§24.19(i) Bernoulli and Euler Numbers and Polynomials
β–ΊEquations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …A similar method can be used for the Euler numbers based on (4.19.5). … β–ΊFor algorithms for computing B n , E n , B n ⁑ ( x ) , and E n ⁑ ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180). …
13: 24.4 Basic Properties
β–Ί
§24.4(iv) Finite Expansions
β–Ί
24.4.16 E 2 ⁒ n = 1 2 ⁒ n + 1 k = 1 n ( 2 ⁒ n 2 ⁒ k 1 ) ⁒ 2 2 ⁒ k ⁒ ( 2 2 ⁒ k 1 1 ) ⁒ B 2 ⁒ k k ,
β–Ί
24.4.17 E 2 ⁒ n = 1 k = 1 n ( 2 ⁒ n 2 ⁒ k 1 ) ⁒ 2 2 ⁒ k ⁒ ( 2 2 ⁒ k 1 ) ⁒ B 2 ⁒ k 2 ⁒ k .
β–Ί
24.4.28 E n ⁑ ( 1 2 ) = 2 n ⁒ E n .
β–Ί
24.4.33 E 2 ⁒ n ⁑ ( 1 6 ) = E 2 ⁒ n ⁑ ( 5 6 ) = 1 + 3 2 ⁒ n 2 2 ⁒ n + 1 ⁒ E 2 ⁒ n .
14: 24.13 Integrals
β–Ί
24.13.5 1 / 4 3 / 4 B n ⁑ ( t ) ⁒ d t = E n 2 2 ⁒ n + 1 .
β–Ί
24.13.8 0 1 E n ⁑ ( t ) ⁒ d t = 2 ⁒ E n + 1 ⁑ ( 0 ) n + 1 = 4 ⁒ ( 2 n + 2 1 ) ( n + 1 ) ⁒ ( n + 2 ) ⁒ B n + 2 ,
β–Ί
24.13.9 0 1 / 2 E 2 ⁒ n ⁑ ( t ) ⁒ d t = E 2 ⁒ n + 1 ⁑ ( 0 ) 2 ⁒ n + 1 = 2 ⁒ ( 2 2 ⁒ n + 2 1 ) ⁒ B 2 ⁒ n + 2 ( 2 ⁒ n + 1 ) ⁒ ( 2 ⁒ n + 2 ) ,
β–Ί
24.13.10 0 1 / 2 E 2 ⁒ n 1 ⁑ ( t ) ⁒ d t = E 2 ⁒ n n ⁒ 2 2 ⁒ n + 1 , n = 1 , 2 , .
β–Ί
24.13.11 0 1 E n ⁑ ( t ) ⁒ E m ⁑ ( t ) ⁒ d t = ( 1 ) n ⁒ 4 ⁒ ( 2 m + n + 2 1 ) ⁒ m ! ⁒ n ! ( m + n + 2 ) ! ⁒ B m + n + 2 .
15: 4.19 Maclaurin Series and Laurent Series
β–ΊIn (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)). … β–Ί
4.19.5 sec ⁑ z = 1 + z 2 2 + 5 24 ⁒ z 4 + 61 720 ⁒ z 6 + β‹― + ( 1 ) n ⁒ E 2 ⁒ n ( 2 ⁒ n ) ! ⁒ z 2 ⁒ n + β‹― , | z | < 1 2 ⁒ Ο€ ,
16: 24.7 Integral Representations
β–Ί
§24.7(i) Bernoulli and Euler Numbers
β–Ί
24.7.5 B 2 ⁒ n = ( 1 ) n ⁒ 2 ⁒ n ⁒ ( 2 ⁒ n 1 ) Ο€ ⁒ 0 t 2 ⁒ n 2 ⁒ ln ⁑ ( 1 e 2 ⁒ Ο€ ⁒ t ) ⁒ d t .
β–Ί
24.7.6 E 2 ⁒ n = ( 1 ) n ⁒ 2 2 ⁒ n + 1 ⁒ 0 t 2 ⁒ n ⁒ sech ⁑ ( Ο€ ⁒ t ) ⁒ d t .
17: 24.8 Series Expansions
β–Ί
24.8.9 E 2 ⁒ n = ( 1 ) n ⁒ k = 1 k 2 ⁒ n cosh ⁑ ( 1 2 ⁒ Ο€ ⁒ k ) 4 ⁒ k = 0 ( 1 ) k ⁒ ( 2 ⁒ k + 1 ) 2 ⁒ n e 2 ⁒ Ο€ ⁒ ( 2 ⁒ k + 1 ) 1 , n = 1 , 2 , .
18: 24.15 Related Sequences of Numbers
β–Ί
24.15.12 k = 0 n / 2 ( n 2 ⁒ k ) ⁒ ( 5 4 ) k ⁒ E 2 ⁒ k ⁒ v n 2 ⁒ k = 1 2 n 1 .
19: 24.17 Mathematical Applications
β–Ί
§24.17(iii) Number Theory
β–ΊBernoulli and Euler numbers and polynomials occur in: number theory via (24.4.7), (24.4.8), and other identities involving sums of powers; the Riemann zeta function and L -series (§25.15, Apostol (1976), and Ireland and Rosen (1990)); arithmetic of cyclotomic fields and the classical theory of Fermat’s last theorem (Ribenboim (1979) and Washington (1997)); p -adic analysis (Koblitz (1984, Chapter 2)). …
20: 24.16 Generalizations
§24.16 Generalizations
β–ΊWhen x = 0 they reduce to the Bernoulli and Euler numbers of order β„“ : … β–Ί
24.16.13 E n ⁑ ( x ) = 2 1 n n + 1 ⁒ B n + 1 , Ο‡ 4 ⁒ ( 2 ⁒ x 1 ) .
β–Ί
§24.16(iii) Other Generalizations
β–ΊIn no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); p -adic integer order Bernoulli numbers (Adelberg (1996)); p -adic q -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).