About the Project

Euler integral

AdvancedHelp

(0.009 seconds)

21—30 of 206 matching pages

21: 8.8 Recurrence Relations and Derivatives
22: 13.6 Relations to Other Functions
β–Ί
13.6.6 U ⁑ ( a , a , z ) = z 1 a ⁒ U ⁑ ( 1 , 2 a , z ) = z 1 a ⁒ e z ⁒ E a ⁑ ( z ) = e z ⁒ Ξ“ ⁑ ( 1 a , z ) .
23: 35.7 Gaussian Hypergeometric Function of Matrix Argument
β–Ί
35.7.5 F 1 2 ⁑ ( a , b c ; 𝐓 ) = 1 B m ⁑ ( a , c a ) ⁒ 𝟎 < 𝐗 < 𝐈 | 𝐗 | a 1 2 ⁒ ( m + 1 ) ⁒ | 𝐈 𝐗 | c a 1 2 ⁒ ( m + 1 ) ⁒ | 𝐈 𝐓 ⁒ 𝐗 | b ⁒ d 𝐗 , ⁑ ( a ) , ⁑ ( c a ) > 1 2 ⁒ ( m 1 ) , 𝟎 < 𝐓 < 𝐈 .
24: 25.5 Integral Representations
β–Ί
25.5.1 ΞΆ ⁑ ( s ) = 1 Ξ“ ⁑ ( s ) ⁒ 0 x s 1 e x 1 ⁒ d x , ⁑ s > 1 .
β–Ί
25.5.2 ΞΆ ⁑ ( s ) = 1 Ξ“ ⁑ ( s + 1 ) ⁒ 0 e x ⁒ x s ( e x 1 ) 2 ⁒ d x , ⁑ s > 1 .
β–Ί
25.5.3 ΞΆ ⁑ ( s ) = 1 ( 1 2 1 s ) ⁒ Ξ“ ⁑ ( s ) ⁒ 0 x s 1 e x + 1 ⁒ d x , ⁑ s > 0 .
β–Ί
25.5.6 ΞΆ ⁑ ( s ) = 1 2 + 1 s 1 + 1 Ξ“ ⁑ ( s ) ⁒ 0 ( 1 e x 1 1 x + 1 2 ) ⁒ x s 1 e x ⁒ d x , ⁑ s > 1 .
β–Ί
25.5.8 ΞΆ ⁑ ( s ) = 1 2 ⁒ ( 1 2 s ) ⁒ Ξ“ ⁑ ( s ) ⁒ 0 x s 1 sinh ⁑ x ⁒ d x , ⁑ s > 1 .
25: 6.10 Other Series Expansions
β–Ί
6.10.6 Ei ⁑ ( x ) = Ξ³ + ln ⁑ | x | + n = 0 ( 1 ) n ⁒ ( x a n ) ⁒ ( 𝗂 n ( 1 ) ⁑ ( 1 2 ⁒ x ) ) 2 , x 0 ,
26: 8.19 Generalized Exponential Integral
β–Ί
8.19.1 E p ⁑ ( z ) = z p 1 ⁒ Ξ“ ⁑ ( 1 p , z ) .
β–ΊMost properties of E p ⁑ ( z ) follow straightforwardly from those of Ξ“ ⁑ ( a , z ) . … β–Ί
8.19.4 E p ⁑ ( z ) = z p 1 ⁒ e z Ξ“ ⁑ ( p ) ⁒ 0 t p 1 ⁒ e z ⁒ t 1 + t ⁒ d t , | ph ⁑ z | < 1 2 ⁒ Ο€ , ⁑ p > 0 .
β–Ί
8.19.10 E p ⁑ ( z ) = z p 1 ⁒ Ξ“ ⁑ ( 1 p ) k = 0 ( z ) k k ! ⁒ ( 1 p + k ) ,
β–Ί
8.19.11 E p ⁑ ( z ) = Ξ“ ⁑ ( 1 p ) ⁒ ( z p 1 e z ⁒ k = 0 z k Ξ“ ⁑ ( 2 p + k ) ) ,
27: 6.4 Analytic Continuation
β–Ί
6.4.1 E 1 ⁑ ( z ) = Ein ⁑ ( z ) Ln ⁑ z γ ;
β–Ί
6.4.3 E 1 ⁑ ( z ⁒ e ± Ο€ ⁒ i ) = Ein ⁑ ( z ) ln ⁑ z Ξ³ βˆ“ Ο€ ⁒ i , | ph ⁑ z | Ο€ .
28: 25.12 Polylogarithms
β–Ί
25.12.11 Li s ⁑ ( z ) z Ξ“ ⁑ ( s ) ⁒ 0 x s 1 e x z ⁒ d x ,
β–Ί
25.12.14 F s ⁑ ( x ) = 1 Ξ“ ⁑ ( s + 1 ) ⁒ 0 t s e t x + 1 ⁒ d t , s > 1 ,
β–Ί
25.12.15 G s ⁑ ( x ) = 1 Ξ“ ⁑ ( s + 1 ) ⁒ 0 t s e t x 1 ⁒ d t , s > 1 , x < 0 ; or s > 0 , x 0 ,
29: 29.18 Mathematical Applications
β–Ί
0 γ 4 ⁒ K ⁑ ,
β–Ί
β = K ⁑ + i ⁒ β , 0 β 2 ⁒ K ⁑ , 0 γ 4 ⁒ K ⁑ ,
30: 13.4 Integral Representations
β–Ί
13.4.1 𝐌 ⁑ ( a , b , z ) = 1 Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b a ) ⁒ 0 1 e z ⁒ t ⁒ t a 1 ⁒ ( 1 t ) b a 1 ⁒ d t , ⁑ b > ⁑ a > 0 ,
β–Ί
13.4.3 𝐌 ⁑ ( a , b , z ) = z 1 2 1 2 ⁒ b Ξ“ ⁑ ( a ) ⁒ 0 e t ⁒ t a 1 2 ⁒ b 1 2 ⁒ J b 1 ⁑ ( 2 ⁒ z ⁒ t ) ⁒ d t , ⁑ a > 0 .
β–Ί
13.4.4 U ⁑ ( a , b , z ) = 1 Ξ“ ⁑ ( a ) ⁒ 0 e z ⁒ t ⁒ t a 1 ⁒ ( 1 + t ) b a 1 ⁒ d t , ⁑ a > 0 , | ph ⁑ z | < 1 2 ⁒ Ο€ ,
β–Ί
13.4.9 𝐌 ⁑ ( a , b , z ) = Ξ“ ⁑ ( 1 + a b ) 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a ) ⁒ 0 ( 1 + ) e z ⁒ t ⁒ t a 1 ⁒ ( t 1 ) b a 1 ⁒ d t , b a 1 , 2 , 3 , , ⁑ a > 0 .
β–Ί
13.4.16 𝐌 ⁑ ( a , b , z ) = 1 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a ) ⁒ i ⁒ i ⁒ Ξ“ ⁑ ( a + t ) ⁒ Ξ“ ⁑ ( t ) Ξ“ ⁑ ( b + t ) ⁒ z t ⁒ d t , | ph ⁑ z | < 1 2 ⁒ Ο€ ,