About the Project

Euler constant

AdvancedHelp

(0.013 seconds)

21—30 of 339 matching pages

21: 8.13 Zeros
§8.13(i) x -Zeros of γ ( a , x )
The function γ ( a , x ) has no real zeros for a 0 . …
§8.13(ii) λ -Zeros of γ ( a , λ a ) and Γ ( a , λ a )
For information on the distribution and computation of zeros of γ ( a , λ a ) and Γ ( a , λ a ) in the complex λ -plane for large values of the positive real parameter a see Temme (1995a).
§8.13(iii) a -Zeros of γ ( a , x )
22: 30.2 Differential Equations
The equation contains three real parameters λ , γ 2 , and μ . In applications involving prolate spheroidal coordinates γ 2 is positive, in applications involving oblate spheroidal coordinates γ 2 is negative; see §§30.13, 30.14. … With ζ = γ z Equation (30.2.1) changes to … If γ = 0 , Equation (30.2.1) is the associated Legendre differential equation; see (14.2.2). …If γ = 0 , Equation (30.2.4) is satisfied by spherical Bessel functions; see (10.47.1).
23: 30.17 Tables
  • Stratton et al. (1956) tabulates quantities closely related to λ n m ( γ 2 ) and a n , k m ( γ 2 ) for 0 m 8 , m n 8 , 64 γ 2 64 . Precision is 7S.

  • Hanish et al. (1970) gives λ n m ( γ 2 ) and S n m ( j ) ( z , γ ) , j = 1 , 2 , and their first derivatives, for 0 m 2 , m n m + 49 , 1600 γ 2 1600 . The range of z is given by 1 z 10 if γ 2 > 0 , or z = i ξ , 0 ξ 2 if γ 2 < 0 . Precision is 18S.

  • EraŠevskaja et al. (1973, 1976) gives S m ( j ) ( i y , i c ) , S m ( j ) ( z , γ ) and their first derivatives for j = 1 , 2 , 0.5 c 8 , y = 0 , 0.5 , 1 , 1.5 , 0.5 γ 8 , z = 1.01 , 1.1 , 1.4 , 1.8 . Precision is 15S.

  • Van Buren et al. (1975) gives λ n 0 ( γ 2 ) , 𝖯𝗌 n 0 ( x , γ 2 ) for 0 n 49 , 1600 γ 2 1600 , 1 x 1 . Precision is 8S.

  • 24: 30.11 Radial Spheroidal Wave Functions
    Here a n , k m ( γ 2 ) is defined by (30.8.2) and (30.8.6), and … where
    30.11.10 K n m ( γ ) = π 2 ( γ 2 ) m ( 1 ) m a n , 1 2 ( m n ) m ( γ 2 ) Γ ( 3 2 + m ) A n m ( γ 2 ) 𝖯𝗌 n m ( 0 , γ 2 ) , n m even,
    30.11.11 K n m ( γ ) = π 2 ( γ 2 ) m + 1 ( 1 ) m a n , 1 2 ( m n + 1 ) m ( γ 2 ) Γ ( 5 2 + m ) A n m ( γ 2 ) ( d 𝖯𝗌 n m ( z , γ 2 ) / d z | z = 0 ) , n m odd.
    25: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
    31.5.1 [ 0 a γ 0 0 P 1 Q 1 R 1 0 0 P 2 Q 2 R n 1 0 0 P n Q n ] ,
    31.5.2 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) = H ( a , q n , m ; n , β , γ , δ ; z )
    26: 31.3 Basic Solutions
    31.3.2 a γ c 1 q c 0 = 0 ,
    R j = a ( j + 1 ) ( j + γ ) .
    Similarly, if γ 1 , 2 , 3 , , then the solution of (31.2.1) that corresponds to the exponent 1 γ at z = 0 is When γ , linearly independent solutions can be constructed as in §2.7(i). …
    27: 31.14 General Fuchsian Equation
    The exponents at the finite singularities a j are { 0 , 1 γ j } and those at are { α , β } , where …The three sets of parameters comprise the singularity parameters a j , the exponent parameters α , β , γ j , and the N 2 free accessory parameters q j . …
    31.14.3 w ( z ) = ( j = 1 N ( z a j ) γ j / 2 ) W ( z ) ,
    q ~ j = 1 2 k = 1 k j N γ j γ k a j a k q j ,
    γ ~ j = γ j 2 ( γ j 2 1 ) .
    28: 16.1 Special Notation
    The main functions treated in this chapter are the generalized hypergeometric function F q p ( a 1 , , a p b 1 , , b q ; z ) , the Appell (two-variable hypergeometric) functions F 1 ( α ; β , β ; γ ; x , y ) , F 2 ( α ; β , β ; γ , γ ; x , y ) , F 3 ( α , α ; β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , and the Meijer G -function G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) . Alternative notations are F q p ( 𝐚 𝐛 ; z ) , F q p ( a 1 , , a p ; b 1 , , b q ; z ) , and F q p ( 𝐚 ; 𝐛 ; z ) for the generalized hypergeometric function, F 1 ( α , β , β ; γ ; x , y ) , F 2 ( α , β , β ; γ , γ ; x , y ) , F 3 ( α , α , β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , for the Appell functions, and G p , q m , n ( z ; 𝐚 ; 𝐛 ) for the Meijer G -function.
    29: 15.11 Riemann’s Differential Equation
    The most general form is given by
    15.11.1 d 2 w d z 2 + ( 1 a 1 a 2 z α + 1 b 1 b 2 z β + 1 c 1 c 2 z γ ) d w d z + ( ( α β ) ( α γ ) a 1 a 2 z α + ( β α ) ( β γ ) b 1 b 2 z β + ( γ α ) ( γ β ) c 1 c 2 z γ ) w ( z α ) ( z β ) ( z γ ) = 0 ,
    Here { a 1 , a 2 } , { b 1 , b 2 } , { c 1 , c 2 } are the exponent pairs at the points α , β , γ , respectively. …Also, if any of α , β , γ , is at infinity, then we take the corresponding limit in (15.11.1). … These constants can be chosen to map any two sets of three distinct points { α , β , γ } and { α ~ , β ~ , γ ~ } onto each other. …
    30: Sidebar 5.SB1: Gamma & Digamma Phase Plots
    The color encoded phases of Γ ( z ) (above) and ψ ( z ) (below), are constrasted in the negative half of the complex plane. In the upper half of the image, the poles of Γ ( z ) are clearly visible at negative integer values of z : the phase changes by 2 π around each pole, showing a full revolution of the color wheel. … In the lower half of the image, the poles of ψ ( z ) (corresponding to the poles of Γ ( z ) ) and the zeros between them are clear. …