About the Project

Euler%20splines

AdvancedHelp

(0.006 seconds)

11—20 of 453 matching pages

11: Bibliography C
  • L. Carlitz (1954b) A note on Euler numbers and polynomials. Nagoya Math. J. 7, pp. 35–43.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • R. F. Christy and I. Duck (1961) γ rays from an extranuclear direct capture process. Nuclear Physics 24 (1), pp. 89–101.
  • C. K. Chui (1988) Multivariate Splines. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 54, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 12: 3.11 Approximation Techniques
    §3.11(vi) Splines
    Splines are defined piecewise and usually by low-degree polynomials. … For splines based on Bernoulli and Euler polynomials, see §24.17(ii). … A complete spline results by composing several Bézier curves. …See Knuth (1986, pp. 116-136).
    13: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • D. S. Meek and D. J. Walton (1992) Clothoid spline transition spirals. Math. Comp. 59 (199), pp. 117–133.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 14: 20 Theta Functions
    Chapter 20 Theta Functions
    15: 30.9 Asymptotic Approximations and Expansions
    §30.9(i) Prolate Spheroidal Wave Functions
    As γ 2 + , with q = 2 ( n m ) + 1 , … The asymptotic behavior of λ n m ( γ 2 ) and a n , k m ( γ 2 ) as n in descending powers of 2 n + 1 is derived in Meixner (1944). …The asymptotic behavior of 𝖯𝗌 n m ( x , γ 2 ) and 𝖰𝗌 n m ( x , γ 2 ) as x ± 1 is given in Erdélyi et al. (1955, p. 151). The behavior of λ n m ( γ 2 ) for complex γ 2 and large | λ n m ( γ 2 ) | is investigated in Hunter and Guerrieri (1982). …
    16: 15.10 Hypergeometric Differential Equation
    The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are:
    15.10.17 w 3 ( z ) = Γ ( 1 c ) Γ ( a + b c + 1 ) Γ ( a c + 1 ) Γ ( b c + 1 ) w 1 ( z ) + Γ ( c 1 ) Γ ( a + b c + 1 ) Γ ( a ) Γ ( b ) w 2 ( z ) ,
    15.10.18 w 4 ( z ) = Γ ( 1 c ) Γ ( c a b + 1 ) Γ ( 1 a ) Γ ( 1 b ) w 1 ( z ) + Γ ( c 1 ) Γ ( c a b + 1 ) Γ ( c a ) Γ ( c b ) w 2 ( z ) ,
    15.10.21 w 1 ( z ) = Γ ( c ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) w 3 ( z ) + Γ ( c ) Γ ( a + b c ) Γ ( a ) Γ ( b ) w 4 ( z ) ,
    15.10.25 w 1 ( z ) = Γ ( c ) Γ ( b a ) Γ ( b ) Γ ( c a ) w 5 ( z ) + Γ ( c ) Γ ( a b ) Γ ( a ) Γ ( c b ) w 6 ( z ) ,
    17: 25.12 Polylogarithms
    The notation Li 2 ( z ) was introduced in Lewin (1981) for a function discussed in Euler (1768) and called the dilogarithm in Hill (1828): …
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    25.12.11 Li s ( z ) z Γ ( s ) 0 x s 1 e x z d x ,
    Sometimes the factor 1 / Γ ( s + 1 ) is omitted. …
    18: 5.11 Asymptotic Expansions
    The scaled gamma function Γ ( z ) is defined in (5.11.3) and its main property is Γ ( z ) 1 as z in the sector | ph z | π δ . Wrench (1968) gives exact values of g k up to g 20 . …
    5.11.12 Γ ( z + a ) Γ ( z + b ) z a b ,
    5.11.13 Γ ( z + a ) Γ ( z + b ) z a b k = 0 G k ( a , b ) z k ,
    5.11.19 Γ ( z + a ) Γ ( z + b ) Γ ( z + c ) k = 0 ( 1 ) k ( c a ) k ( c b ) k k ! Γ ( a + b c + z k ) .
    19: 24.18 Physical Applications
    §24.18 Physical Applications
    Bernoulli polynomials appear in statistical physics (Ordóñez and Driebe (1996)), in discussions of Casimir forces (Li et al. (1991)), and in a study of quark-gluon plasma (Meisinger et al. (2002)). Euler polynomials also appear in statistical physics as well as in semi-classical approximations to quantum probability distributions (Ballentine and McRae (1998)).
    20: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .