About the Project

Dirac%20delta

AdvancedHelp

(0.001 seconds)

21—30 of 288 matching pages

21: 1.4 Calculus of One Variable
that is, for every arbitrarily small positive constant ϵ there exists δ ( > 0 ) such that …for all α such that 0 α < δ . … If, for example, α ( x ) = H ( x x n ) , the Heaviside unit step-function (1.16.14), then the corresponding measure d α ( x ) is δ ( x x n ) d x , where δ ( x x n ) is the Dirac δ -function of §1.17, such that, for f ( x ) a continuous function on ( a , b ) , a b f ( x ) d α ( x ) = f ( x n ) for x n ( a , b ) and 0 otherwise. Delta distributions and Dirac δ -functions are discussed in §§1.16(iii), 1.16(iv) and 1.17. … Let d α ( x ) = w ( x ) d x + n = 1 N w n δ ( x x n ) d x , x n ( a , b ) , n = 1 , N . …
22: 20.13 Physical Applications
is also a solution of (20.13.2), and it approaches a Dirac delta1.17) at t = 0 . …
23: Mathematical Introduction
These include, for example, multivalued functions of complex variables, for which new definitions of branch points and principal values are supplied (§§1.10(vi), 4.2(i)); the Dirac delta (or delta function), which is introduced in a more readily comprehensible way for mathematicians (§1.17); numerically satisfactory solutions of differential and difference equations (§§2.7(iv), 2.9(i)); and numerical analysis for complex variables (Chapter 3). …
complex plane (excluding infinity).
δ j , k or δ j k Kronecker delta: 0 if j k ; 1 if j = k .
Δ (or Δ x ) forward difference operator: Δ f ( x ) = f ( x + 1 ) f ( x ) .
24: 25.21 Software
§25.21(vii) Fermi–Dirac and Bose–Einstein Integrals
25: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • L. W. Fullerton and G. A. Rinker (1986) Generalized Fermi-Dirac integrals—FD, FDG, FDH. Comput. Phys. Comm. 39 (2), pp. 181–185.
  • 26: 18.39 Applications in the Physical Sciences
    These eigenfunctions are quantum wave-functions whose absolute values squared give the probability density of finding the single particle at hand at position x in the n th eigenstate, namely that probability is P ( x x + Δ x ) = | ψ n ( x ) | 2 Δ ( x ) , Δ ( x ) being a localized interval on the x -axis. … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … Bound state solutions to the relativistic Dirac Equation, for this same problem of a single electron attracted by a nucleus with Z protons, involve Laguerre polynomials of fractional index. … The bound state L 2 eigenfunctions of the radial Coulomb Schrödinger operator are discussed in §§18.39(i) and 18.39(ii), and the δ -function normalized (non- L 2 ) in Chapter 33, where the solutions appear as Whittaker functions. … With N the functions normalized as δ ( ϵ ϵ ) with measure d r are, formally, …
    27: 18.36 Miscellaneous Polynomials
    These are OP’s on the interval ( 1 , 1 ) with respect to an orthogonality measure obtained by adding constant multiples of “Dirac delta weights” at 1 and 1 to the weight function for the Jacobi polynomials. …
    18.36.6 0 L ^ n ( k ) ( x ) L ^ m ( k ) ( x ) W ^ k ( x ) d x = ( n + k ) Γ ( n + k 1 ) ( n 1 ) ! δ n , m .
    28: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • A. J. MacLeod (1998) Algorithm 779: Fermi-Dirac functions of order 1 / 2 , 1 / 2 , 3 / 2 , 5 / 2 . ACM Trans. Math. Software 24 (1), pp. 1–12.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • N. Mohankumar and A. Natarajan (1997) The accurate evaluation of a particular Fermi-Dirac integral. Comput. Phys. Comm. 101 (1-2), pp. 47–53.
  • 29: Bibliography S
  • R. P. Sagar (1991a) A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals. Comput. Phys. Comm. 66 (2-3), pp. 271–275.
  • R. P. Sagar (1991b) On the evaluation of the Fermi-Dirac integrals. Astrophys. J. 376 (1, part 1), pp. 364–366.
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • 30: Software Index