About the Project

Coulomb wave functions

AdvancedHelp

(0.002 seconds)

21—25 of 25 matching pages

21: Bibliography N
  • R. G. Newton (2002) Scattering theory of waves and particles. Dover Publications, Inc., Mineola, NY.
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • C. J. Noble and I. J. Thompson (1984) COULN, a program for evaluating negative energy Coulomb functions. Comput. Phys. Comm. 33 (4), pp. 413–419.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • J. F. Nye (1999) Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. Institute of Physics Publishing, Bristol.
  • 22: Bibliography T
  • T. Takemasa, T. Tamura, and H. H. Wolter (1979) Coulomb functions with complex angular momenta. Comput. Phys. Comm. 17 (4), pp. 351–355.
  • S. A. Teukolsky (1972) Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29 (16), pp. 1114–1118.
  • I. J. Thompson and A. R. Barnett (1985) COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 36 (4), pp. 363–372.
  • I. J. Thompson and A. R. Barnett (1986) Coulomb and Bessel functions of complex arguments and order. J. Comput. Phys. 64 (2), pp. 490–509.
  • I. J. Thompson (2004) Erratum to “COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments”. Comput. Phys. Comm. 159 (3), pp. 241–242.
  • 23: 13.28 Physical Applications
    §13.28 Physical Applications
    §13.28(i) Exact Solutions of the Wave Equation
    The reduced wave equation 2 w = k 2 w in paraboloidal coordinates, x = 2 ξ η cos ϕ , y = 2 ξ η sin ϕ , z = ξ η , can be solved via separation of variables w = f 1 ( ξ ) f 2 ( η ) e i p ϕ , where …
    §13.28(ii) Coulomb Functions
    24: Bibliography K
  • P. L. Kapitsa (1951a) Heat conduction and diffusion in a fluid medium with a periodic flow. I. Determination of the wave transfer coefficient in a tube, slot, and canal. Akad. Nauk SSSR. Žurnal Eksper. Teoret. Fiz. 21, pp. 964–978.
  • B. J. King and A. L. Van Buren (1973) A general addition theorem for spheroidal wave functions. SIAM J. Math. Anal. 4 (1), pp. 149–160.
  • G. C. Kokkorakis and J. A. Roumeliotis (1998) Electromagnetic eigenfrequencies in a spheroidal cavity (calculation by spheroidal eigenvectors). J. Electromagn. Waves Appl. 12 (12), pp. 1601–1624.
  • I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov (1976) Sferoidalnye i kulonovskie sferoidalnye funktsii. Izdat. “Nauka”, Moscow (Russian).
  • Y. A. Kravtsov (1968) Two new asymptotic methods in the theory of wave propagation in inhomogeneous media. Sov. Phys. Acoust. 14, pp. 1–17.
  • 25: Bibliography J
  • D. L. Jagerman (1974) Some properties of the Erlang loss function. Bell System Tech. J. 53, pp. 525–551.
  • H. Jeffreys (1928) The effect on Love waves of heterogeneity in the lower layer. Monthly Notices Roy. Astronom. Soc. Geophysical Supplement 2, pp. 101–111.
  • D. S. Jones (1986) Acoustic and Electromagnetic Waves. Oxford Science Publications, The Clarendon Press Oxford University Press, New York.
  • D. S. Jones (2001) Asymptotics of the hypergeometric function. Math. Methods Appl. Sci. 24 (6), pp. 369–389.
  • B. R. Judd (1976) Modifications of Coulombic interactions by polarizable atoms. Math. Proc. Cambridge Philos. Soc. 80 (3), pp. 535–539.