About the Project

Coulomb functions

AdvancedHelp

(0.005 seconds)

31—40 of 59 matching pages

31: Bibliography T
  • T. Takemasa, T. Tamura, and H. H. Wolter (1979) Coulomb functions with complex angular momenta. Comput. Phys. Comm. 17 (4), pp. 351–355.
  • I. J. Thompson and A. R. Barnett (1985) COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 36 (4), pp. 363–372.
  • I. J. Thompson and A. R. Barnett (1986) Coulomb and Bessel functions of complex arguments and order. J. Comput. Phys. 64 (2), pp. 490–509.
  • I. J. Thompson (2004) Erratum to “COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments”. Comput. Phys. Comm. 159 (3), pp. 241–242.
  • 32: Bibliography N
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • C. J. Noble and I. J. Thompson (1984) COULN, a program for evaluating negative energy Coulomb functions. Comput. Phys. Comm. 33 (4), pp. 413–419.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • 33: 13.18 Relations to Other Functions
    §13.18(vi) Coulomb Functions
    For representations of Coulomb functions in terms of Whittaker functions see (33.2.3), (33.2.7), (33.14.4) and (33.14.7)
    34: Bibliography B
  • A. R. Barnett (1981b) KLEIN: Coulomb functions for real λ and positive energy to high accuracy. Comput. Phys. Comm. 24 (2), pp. 141–159.
  • A. R. Barnett (1996) The Calculation of Spherical Bessel Functions and Coulomb Functions. In Computational Atomic Physics: Electron and Positron Collisions with Atoms and Ions, K. Bartschat and J. Hinze (Eds.), pp. 181–202.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • L. C. Biedenharn, R. L. Gluckstern, M. H. Hull, and G. Breit (1955) Coulomb functions for large charges and small velocities. Phys. Rev. (2) 97 (2), pp. 542–554.
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • 35: 1.17 Integral and Series Representations of the Dirac Delta
    Coulomb Functions33.14(iv))
    1.17.15 δ ( x a ) = 0 s ( x , ; r ) s ( a , ; r ) d r , a > 0 , x > 0 .
    36: 13.6 Relations to Other Functions
    §13.6(vii) Coulomb Functions
    For representations of Coulomb functions in terms of Kummer functions see (33.2.4), (33.2.8) and (33.14.5).
    37: 31.12 Confluent Forms of Heun’s Equation
    This has regular singularities at z = 0 and 1 , and an irregular singularity of rank 1 at z = . Mathieu functions (Chapter 28), spheroidal wave functions (Chapter 30), and Coulomb spheroidal functions30.12) are special cases of solutions of the confluent Heun equation. …
    38: Bibliography H
  • M. Hiyama and H. Nakamura (1997) Two-center Coulomb functions. Comput. Phys. Comm. 103 (2-3), pp. 209–216.
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • J. Humblet (1984) Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Physics 155 (2), pp. 461–493.
  • J. Humblet (1985) Bessel function expansions of Coulomb wave functions. J. Math. Phys. 26 (4), pp. 656–659.
  • 39: Bibliography Y
  • F. L. Yost, J. A. Wheeler, and G. Breit (1936) Coulomb wave functions in repulsive fields. Phys. Rev. 49 (2), pp. 174–189.
  • 40: Bibliography S
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 87–95.
  • M. J. Seaton (1984) The accuracy of iterated JWBK approximations for Coulomb radial functions. Comput. Phys. Comm. 32 (2), pp. 115–119.
  • M. J. Seaton (2002a) Coulomb functions for attractive and repulsive potentials and for positive and negative energies. Comput. Phys. Comm. 146 (2), pp. 225–249.
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • M. J. Seaton (2002c) NUMER, a code for Numerov integrations of Coulomb functions. Comput. Phys. Comm. 146 (2), pp. 254–260.