About the Project

Chebyshev series

AdvancedHelp

(0.002 seconds)

31—34 of 34 matching pages

31: Bibliography F
  • N. J. Fine (1988) Basic Hypergeometric Series and Applications. Mathematical Surveys and Monographs, Vol. 27, American Mathematical Society, Providence, RI.
  • W. B. Ford (1960) Studies on Divergent Series and Summability & The Asymptotic Developments of Functions Defined by Maclaurin Series. Chelsea Publishing Co., New York.
  • L. Fox and I. B. Parker (1968) Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London.
  • C. L. Frenzen and R. Wong (1986) Asymptotic expansions of the Lebesgue constants for Jacobi series. Pacific J. Math. 122 (2), pp. 391–415.
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.
  • 32: 18.5 Explicit Representations
    Chebyshev
    Chebyshev
    For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). …
    Chebyshev
    33: Bibliography B
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • R. Barakat (1961) Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials. Math. Comp. 15 (73), pp. 7–11.
  • J. M. Blair, C. A. Edwards, and J. H. Johnson (1976) Rational Chebyshev approximations for the inverse of the error function. Math. Comp. 30 (136), pp. 827–830.
  • J. M. Blair, C. A. Edwards, and J. H. Johnson (1978) Rational Chebyshev approximations for the Bickley functions K i n ( x ) . Math. Comp. 32 (143), pp. 876–886.
  • 34: 3.5 Quadrature
    For the latter a = 1 , b = 1 , and the nodes x k are the extrema of the Chebyshev polynomial T n ( x ) 3.11(ii) and §18.3). …
    Gauss–Chebyshev Formula
    The integral is written as an alternating series of positive and negative subintegrals that are computed individually; see Longman (1956). Convergence acceleration schemes, for example Levin’s transformation (§3.9(v)), can be used when evaluating the series. …