About the Project

Catalan%20constant

AdvancedHelp

(0.002 seconds)

11—20 of 498 matching pages

11: 30.9 Asymptotic Approximations and Expansions
β–Ί
§30.9(i) Prolate Spheroidal Wave Functions
β–ΊAs Ξ³ 2 + , with q = 2 ⁒ ( n m ) + 1 , … β–ΊThe asymptotic behavior of Ξ» n m ⁑ ( Ξ³ 2 ) and a n , k m ⁑ ( Ξ³ 2 ) as n in descending powers of 2 ⁒ n + 1 is derived in Meixner (1944). …The asymptotic behavior of π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) and π–°π—Œ n m ⁑ ( x , Ξ³ 2 ) as x ± 1 is given in Erdélyi et al. (1955, p. 151). The behavior of Ξ» n m ⁑ ( Ξ³ 2 ) for complex Ξ³ 2 and large | Ξ» n m ⁑ ( Ξ³ 2 ) | is investigated in Hunter and Guerrieri (1982). …
12: 8 Incomplete Gamma and Related
Functions
13: 28 Mathieu Functions and Hill’s Equation
14: 23 Weierstrass Elliptic and Modular
Functions
15: 36.5 Stokes Sets
β–Ίwhere j denotes a real critical point (36.4.1) or (36.4.2), and ΞΌ denotes a critical point with complex t or s , t , connected with j by a steepest-descent path (that is, a path where ⁑ Ξ¦ = constant ) in complex t or ( s , t ) space. … β–Ί
36.5.4 80 ⁒ x 5 40 ⁒ x 4 55 ⁒ x 3 + 5 ⁒ x 2 + 20 ⁒ x 1 = 0 ,
β–Ί
36.5.7 X = 9 20 + 20 ⁒ u 4 Y 2 20 ⁒ u 2 + 6 ⁒ u 2 ⁒ sign ⁑ ( z ) ,
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 36.5.5: Elliptic umbilic catastrophe with z = constant . … Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 36.5.6: Hyperbolic umbilic catastrophe with z = constant . Magnify
16: 11.6 Asymptotic Expansions
β–Ί
11.6.1 𝐊 Ξ½ ⁑ ( z ) 1 Ο€ ⁒ k = 0 Ξ“ ⁑ ( k + 1 2 ) ⁒ ( 1 2 ⁒ z ) Ξ½ 2 ⁒ k 1 Ξ“ ⁑ ( Ξ½ + 1 2 k ) , | ph ⁑ z | Ο€ Ξ΄ ,
β–Ίwhere Ξ΄ is an arbitrary small positive constant. … β–Ί
11.6.2 𝐌 Ξ½ ⁑ ( z ) 1 Ο€ ⁒ k = 0 ( 1 ) k + 1 ⁒ Ξ“ ⁑ ( k + 1 2 ) ⁒ ( 1 2 ⁒ z ) Ξ½ 2 ⁒ k 1 Ξ“ ⁑ ( Ξ½ + 1 2 k ) , | ph ⁑ z | 1 2 ⁒ Ο€ Ξ΄ .
β–Ίwhere Ξ³ is Euler’s constant5.2(ii)). … β–Ί
c 3 ⁑ ( λ ) = 20 ⁒ λ 6 4 ⁒ λ 4 ,
17: 5.11 Asymptotic Expansions
β–ΊThe scaled gamma function Ξ“ ⁑ ( z ) is defined in (5.11.3) and its main property is Ξ“ ⁑ ( z ) 1 as z in the sector | ph ⁑ z | Ο€ Ξ΄ . Wrench (1968) gives exact values of g k up to g 20 . … β–ΊIn this subsection a , b , and c are real or complex constants. … β–Ί
5.11.12 Ξ“ ⁑ ( z + a ) Ξ“ ⁑ ( z + b ) z a b ,
β–Ί
5.11.19 Ξ“ ⁑ ( z + a ) ⁒ Ξ“ ⁑ ( z + b ) Ξ“ ⁑ ( z + c ) k = 0 ( 1 ) k ⁒ ( c a ) k ⁒ ( c b ) k k ! ⁒ Ξ“ ⁑ ( a + b c + z k ) .
18: 25.6 Integer Arguments
β–Ί
25.6.3 ΢ ⁑ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
β–Ί
25.6.12 ΞΆ ′′ ⁑ ( 0 ) = 1 2 ⁒ ( ln ⁑ ( 2 ⁒ Ο€ ) ) 2 + 1 2 ⁒ Ξ³ 2 1 24 ⁒ Ο€ 2 + Ξ³ 1 ,
β–Ίwhere Ξ³ 1 is given by (25.2.5). … β–Ί
25.6.13 ( 1 ) k ⁒ ΞΆ ( k ) ⁑ ( 2 ⁒ n ) = 2 ⁒ ( 1 ) n ( 2 ⁒ Ο€ ) 2 ⁒ n + 1 ⁒ m = 0 k r = 0 m ( k m ) ⁒ ( m r ) ⁒ ⁑ ( c k m ) ⁒ Ξ“ ( r ) ⁑ ( 2 ⁒ n + 1 ) ⁒ ΞΆ ( m r ) ⁑ ( 2 ⁒ n + 1 ) ,
β–Ί
25.6.14 ( 1 ) k ⁒ ΞΆ ( k ) ⁑ ( 1 2 ⁒ n ) = 2 ⁒ ( 1 ) n ( 2 ⁒ Ο€ ) 2 ⁒ n ⁒ m = 0 k r = 0 m ( k m ) ⁒ ( m r ) ⁒ ⁑ ( c k m ) ⁒ Ξ“ ( r ) ⁑ ( 2 ⁒ n ) ⁒ ΞΆ ( m r ) ⁑ ( 2 ⁒ n ) ,
19: 15.10 Hypergeometric Differential Equation
β–ΊThe ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: β–Ί
15.10.17 w 3 ⁒ ( z ) = Ξ“ ⁑ ( 1 c ) ⁒ Ξ“ ⁑ ( a + b c + 1 ) Ξ“ ⁑ ( a c + 1 ) ⁒ Ξ“ ⁑ ( b c + 1 ) ⁒ w 1 ⁒ ( z ) + Ξ“ ⁑ ( c 1 ) ⁒ Ξ“ ⁑ ( a + b c + 1 ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ w 2 ⁒ ( z ) ,
β–Ί
15.10.18 w 4 ⁒ ( z ) = Ξ“ ⁑ ( 1 c ) ⁒ Ξ“ ⁑ ( c a b + 1 ) Ξ“ ⁑ ( 1 a ) ⁒ Ξ“ ⁑ ( 1 b ) ⁒ w 1 ⁒ ( z ) + Ξ“ ⁑ ( c 1 ) ⁒ Ξ“ ⁑ ( c a b + 1 ) Ξ“ ⁑ ( c a ) ⁒ Ξ“ ⁑ ( c b ) ⁒ w 2 ⁒ ( z ) ,
β–Ί
15.10.21 w 1 ⁒ ( z ) = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( c a b ) Ξ“ ⁑ ( c a ) ⁒ Ξ“ ⁑ ( c b ) ⁒ w 3 ⁒ ( z ) + Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a + b c ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ w 4 ⁒ ( z ) ,
β–Ί
15.10.25 w 1 ⁒ ( z ) = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( b a ) Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c a ) ⁒ w 5 ⁒ ( z ) + Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a b ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c b ) ⁒ w 6 ⁒ ( z ) ,
20: 36 Integrals with Coalescing Saddles