About the Project

Cash App Phone Number☎️+1(888‒481‒4477)☎️ "Number"

AdvancedHelp

(0.014 seconds)

31—40 of 224 matching pages

31: 24.10 Arithmetic Properties
§24.10 Arithmetic Properties
Here and elsewhere two rational numbers are congruent if the modulus divides the numerator of their difference.
§24.10(ii) Kummer Congruences
§24.10(iii) Voronoi’s Congruence
§24.10(iv) Factors
32: 26.1 Special Notation
( m n ) binomial coefficient.
m n Eulerian number.
B ( n ) Bell number.
C ( n ) Catalan number.
Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
33: 25.11 Hurwitz Zeta Function
25.11.32 0 a x n ψ ( x ) d x = ( 1 ) n 1 ζ ( n ) + ( 1 ) n H n B n + 1 n + 1 k = 0 n ( 1 ) k ( n k ) H k B k + 1 ( a ) k + 1 a n k + k = 0 n ( 1 ) k ( n k ) ζ ( k , a ) a n k , n = 1 , 2 , , a > 0 ,
where H n are the harmonic numbers: …
25.11.34 n 0 a ζ ( 1 n , x ) d x = ζ ( n , a ) ζ ( n ) + B n + 1 B n + 1 ( a ) n ( n + 1 ) , n = 1 , 2 , , a > 0 .
25.11.44 ζ ( 1 , a ) 1 12 + 1 4 a 2 ( 1 12 1 2 a + 1 2 a 2 ) ln a k = 1 B 2 k + 2 ( 2 k + 2 ) ( 2 k + 1 ) 2 k a 2 k ,
25.11.45 ζ ( 2 , a ) 1 12 a + 1 9 a 3 ( 1 6 a 1 2 a 2 + 1 3 a 3 ) ln a k = 1 2 B 2 k + 2 ( 2 k + 2 ) ( 2 k + 1 ) 2 k ( 2 k 1 ) a ( 2 k 1 ) .
34: 25.6 Integer Arguments
§25.6(i) Function Values
25.6.2 ζ ( 2 n ) = ( 2 π ) 2 n 2 ( 2 n ) ! | B 2 n | , n = 1 , 2 , 3 , .
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
25.6.15 ζ ( 2 n ) = ( 1 ) n + 1 ( 2 π ) 2 n 2 ( 2 n ) ! ( 2 n ζ ( 1 2 n ) ( ψ ( 2 n ) ln ( 2 π ) ) B 2 n ) .
35: 26.12 Plane Partitions
Then the number of plane partitions in B ( r , s , t ) is … The number of symmetric plane partitions in B ( r , r , t ) is … The number of cyclically symmetric plane partitions in B ( r , r , r ) is … The number of descending plane partitions in B ( r , r , r ) is …
36: 24.6 Explicit Formulas
§24.6 Explicit Formulas
24.6.2 B n = 1 n + 1 k = 1 n j = 1 k ( 1 ) j j n ( n + 1 k j ) / ( n k ) ,
24.6.4 E 2 n = k = 1 n 1 2 k 1 j = 1 k ( 1 ) j ( 2 k k j ) j 2 n ,
24.6.9 B n = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) j n ,
24.6.12 E 2 n = k = 0 2 n 1 2 k j = 0 k ( 1 ) j ( k j ) ( 1 + 2 j ) 2 n .
37: 27.2 Functions
§27.2(i) Definitions
where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) …
§27.2(ii) Tables
38: 10.72 Mathematical Applications
The number m can also be replaced by any real constant λ ( > 2 ) in the sense that ( z z 0 ) λ f ( z ) is analytic and nonvanishing at z 0 ; moreover, g ( z ) is permitted to have a single or double pole at z 0 . …
39: 4.19 Maclaurin Series and Laurent Series
In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)).
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
4.19.5 sec z = 1 + z 2 2 + 5 24 z 4 + 61 720 z 6 + + ( 1 ) n E 2 n ( 2 n ) ! z 2 n + , | z | < 1 2 π ,
4.19.6 cot z = 1 z z 3 z 3 45 2 945 z 5 ( 1 ) n 1 2 2 n B 2 n ( 2 n ) ! z 2 n 1 , 0 < | z | < π ,
40: 24.7 Integral Representations
§24.7(i) Bernoulli and Euler Numbers
24.7.1 B 2 n = ( 1 ) n + 1 4 n 1 2 1 2 n 0 t 2 n 1 e 2 π t + 1 d t = ( 1 ) n + 1 2 n 1 2 1 2 n 0 t 2 n 1 e π t sech ( π t ) d t ,
24.7.2 B 2 n = ( 1 ) n + 1 4 n 0 t 2 n 1 e 2 π t 1 d t = ( 1 ) n + 1 2 n 0 t 2 n 1 e π t csch ( π t ) d t ,
24.7.3 B 2 n = ( 1 ) n + 1 π 1 2 1 2 n 0 t 2 n sech 2 ( π t ) d t ,
24.7.4 B 2 n = ( 1 ) n + 1 π 0 t 2 n csch 2 ( π t ) d t ,