About the Project

Bessel functions and spherical Bessel functions

AdvancedHelp

(0.017 seconds)

21—30 of 61 matching pages

21: 10.57 Uniform Asymptotic Expansions for Large Order
§10.57 Uniform Asymptotic Expansions for Large Order
10.57.1 𝗃 n ( ( n + 1 2 ) z ) = π 1 2 ( ( 2 n + 1 ) z ) 1 2 J n + 1 2 ( ( n + 1 2 ) z ) π 1 2 ( ( 2 n + 1 ) z ) 3 2 J n + 1 2 ( ( n + 1 2 ) z ) .
22: 7.6 Series Expansions
§7.6(ii) Expansions in Series of Spherical Bessel Functions
7.6.8 erf z = 2 z π n = 0 ( 1 ) n ( 𝗂 2 n ( 1 ) ( z 2 ) 𝗂 2 n + 1 ( 1 ) ( z 2 ) ) ,
7.6.9 erf ( a z ) = 2 z π e ( 1 2 a 2 ) z 2 n = 0 T 2 n + 1 ( a ) 𝗂 n ( 1 ) ( 1 2 z 2 ) , 1 a 1 .
7.6.10 C ( z ) = z n = 0 𝗃 2 n ( 1 2 π z 2 ) ,
7.6.11 S ( z ) = z n = 0 𝗃 2 n + 1 ( 1 2 π z 2 ) .
23: 8.7 Series Expansions
§8.7 Series Expansions
For the functions e n ( z ) , 𝗂 n ( 1 ) ( z ) , and L n ( α ) ( x ) see (8.4.11), §§10.47(ii), and 18.3, respectively. …
8.7.5 γ ( a , z ) = e 1 2 z n = 0 ( 1 a ) n Γ ( n + a + 1 ) ( 2 n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) .
24: 10.59 Integrals
§10.59 Integrals
10.59.1 e i b t 𝗃 n ( t ) d t = { π i n P n ( b ) , 1 < b < 1 , 1 2 π ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
For an integral representation of the Dirac delta in terms of a product of spherical Bessel functions of the first kind see §1.17(ii), and for a generalization see Maximon (1991). …
25: 33.5 Limiting Forms for Small ρ , Small | η | , or Large
For the functions 𝗃 , 𝗒 , J , Y see §§10.47(ii), 10.2(ii). …
26: 10.75 Tables
§10.75(ix) Spherical Bessel Functions, Modified Spherical Bessel Functions, and their Derivatives
  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗒 n ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x 𝗃 n ( x ) , ( x 𝗃 n ( x ) ) , x 𝗒 n ( x ) , ( x 𝗒 n ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ( z ) , 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗒 n ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) , 𝗄 n ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, z = 4 + 2 i , 20 + 10 i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)

  • §10.75(x) Zeros and Associated Values of Derivatives of Spherical Bessel Functions
    27: 1.17 Integral and Series Representations of the Dirac Delta
    Bessel Functions and Spherical Bessel Functions (§§10.2(ii), 10.47(ii))
    1.17.14 δ ( x a ) = 2 x a π 0 t 2 𝗃 ( x t ) 𝗃 ( a t ) d t , x > 0 , a > 0 .
    28: 6.18 Methods of Computation
    For small or moderate values of x and | z | , the expansion in power series (§6.6) or in series of spherical Bessel functions6.10(ii)) can be used. …However, this problem is less severe for the series of spherical Bessel functions because of their more rapid rate of convergence, and also (except in the case of (6.10.6)) absence of cancellation when z = x ( > 0 ). …
    29: 18.34 Bessel Polynomials
    where 𝗄 n is a modified spherical Bessel function (10.49.9), and …
    30: Bibliography L
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.