About the Project

Bessel transform

AdvancedHelp

(0.004 seconds)

1—10 of 54 matching pages

1: 10.74 Methods of Computation
Spherical Bessel Transform
The spherical Bessel transform is the Hankel transform (10.22.76) in the case when ν is half an odd positive integer. …
Kontorovich–Lebedev Transform
2: 10.1 Special Notation
For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
3: Bibliography Z
  • Ya. M. Zhileĭkin and A. B. Kukarkin (1995) A fast Fourier-Bessel transform algorithm. Zh. Vychisl. Mat. i Mat. Fiz. 35 (7), pp. 1128–1133 (Russian).
  • 4: Bibliography L
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • 5: Bibliography O
  • F. Oberhettinger (1972) Tables of Bessel Transforms. Springer-Verlag, Berlin-New York.
  • 6: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • 7: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
    The Laplace transform of ϕ ( ρ , β ; z ) can be expressed in terms of the Mittag-Leffler function: …
    8: Bibliography S
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • A. Sidi (1997) Computation of infinite integrals involving Bessel functions of arbitrary order by the D ¯ -transformation. J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • B. Sommer and J. G. Zabolitzky (1979) On numerical Bessel transformation. Comput. Phys. Comm. 16 (3), pp. 383–387.
  • 9: 13.10 Integrals
    For additional Hankel transforms and also other Bessel transforms see Erdélyi et al. (1954b, §8.18) and Oberhettinger (1972, §§1.16 and 3.4.42–46, 4.4.45–47, 5.94–97). …
    10: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    Example 1: Bessel–Hankel Transform, X = [ 0 , )
    0 1 ( 1 + y ν + 1 2 ) | f ( y ) | d y < .
    For generalizations see the Weber transform (10.22.78) and an extended Bessel transform (10.22.79). … The Fourier cosine and sine transform pairs (1.14.9) & (1.14.11) and (1.14.10) & (1.14.12) can be easily obtained from (1.18.57) as for ν = ± 1 2 the Bessel functions reduce to the trigonometric functions, see (10.16.1). …