About the Project

Bernoulli polynomials

AdvancedHelp

(0.003 seconds)

21—30 of 51 matching pages

21: 24.11 Asymptotic Approximations
24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
24.11.5 ( 1 ) n / 2 1 ( 2 π ) n 2 ( n ! ) B n ( x ) { cos ( 2 π x ) , n  even , sin ( 2 π x ) , n  odd ,
22: 24.19 Methods of Computation
§24.19(i) Bernoulli and Euler Numbers and Polynomials
For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180). …
23: 24.6 Explicit Formulas
24.6.6 E 2 n = k = 1 2 n ( 1 ) k 2 k 1 ( 2 n + 1 k + 1 ) j = 0 1 2 k 1 2 ( k j ) ( k 2 j ) 2 n .
24.6.7 B n ( x ) = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) ( x + j ) n ,
24: 24.5 Recurrence Relations
§24.5 Recurrence Relations
24.5.1 k = 0 n 1 ( n k ) B k ( x ) = n x n 1 , n = 2 , 3 , ,
25: 2.10 Sums and Sequences
As in §24.2, let B n and B n ( x ) denote the n th Bernoulli number and polynomial, respectively, and B ~ n ( x ) the n th Bernoulli periodic function B n ( x x ) . …
2.10.1 j = a n f ( j ) = a n f ( x ) d x + 1 2 f ( a ) + 1 2 f ( n ) + s = 1 m 1 B 2 s ( 2 s ) ! ( f ( 2 s 1 ) ( n ) f ( 2 s 1 ) ( a ) ) + a n B 2 m B ~ 2 m ( x ) ( 2 m ) ! f ( 2 m ) ( x ) d x .
2.10.5 R m ( n ) = n B ~ 2 m ( x ) B 2 m 2 m ( 2 m 1 ) x 2 m 1 d x .
From §24.12(i), (24.2.2), and (24.4.27), B ~ 2 m ( x ) B 2 m is of constant sign ( 1 ) m . …
26: 24 Bernoulli and Euler Polynomials
Chapter 24 Bernoulli and Euler Polynomials
27: 25.6 Integer Arguments
§25.6(i) Function Values
25.6.6 ζ ( 2 k + 1 ) = ( 1 ) k + 1 ( 2 π ) 2 k + 1 2 ( 2 k + 1 ) ! 0 1 B 2 k + 1 ( t ) cot ( π t ) d t , k = 1 , 2 , 3 , .
28: Errata
  • Equations (25.11.6), (25.11.19), and (25.11.20)

    Originally all six integrands in these equations were incorrect because their numerators contained the function B ~ 2 ( x ) . The correct function is B ~ 2 ( x ) B 2 2 . The new equations are:

    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0

    Reported 2016-05-08 by Clemens Heuberger.

    25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0

    Reported 2016-06-27 by Gergő Nemes.

    25.11.20 ( 1 ) k ζ ( k ) ( s , a ) = ( ln a ) k a s ( 1 2 + a s 1 ) + k ! a 1 s r = 0 k 1 ( ln a ) r r ! ( s 1 ) k r + 1 s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k ( x + a ) s + 2 d x + k ( 2 s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 1 ( x + a ) s + 2 d x k ( k 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0

    Reported 2016-06-27 by Gergő Nemes.

  • Equation (5.17.5)
    5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) Ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k

    Originally the term z Ln Γ ( z + 1 ) was incorrectly stated as z Γ ( z + 1 ) .

    Reported 2013-08-01 by Gergő Nemes and subsequently by Nick Jones on December 11, 2013.

  • 29: Software Index
    30: Bibliography T
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • P. G. Todorov (1991) Explicit formulas for the Bernoulli and Euler polynomials and numbers. Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
  • P. G. Todorov (1984) On the theory of the Bernoulli polynomials and numbers. J. Math. Anal. Appl. 104 (2), pp. 309–350.