About the Project

Bernoulli lemniscate

AdvancedHelp

(0.001 seconds)

1—10 of 70 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
2: 19.30 Lengths of Plane Curves
§19.30(iii) Bernoulli’s Lemniscate
For 0 θ 1 4 π , the arclength s of Bernoulli’s lemniscate …The perimeter length P of the lemniscate is given by …
3: 24.18 Physical Applications
§24.18 Physical Applications
Bernoulli polynomials appear in statistical physics (Ordóñez and Driebe (1996)), in discussions of Casimir forces (Li et al. (1991)), and in a study of quark-gluon plasma (Meisinger et al. (2002)). …
4: Bibliography T
  • J. W. Tanner and S. S. Wagstaff (1987) New congruences for the Bernoulli numbers. Math. Comp. 48 (177), pp. 341–350.
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • J. Todd (1975) The lemniscate constants. Comm. ACM 18 (1), pp. 14–19.
  • P. G. Todorov (1991) Explicit formulas for the Bernoulli and Euler polynomials and numbers. Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
  • P. G. Todorov (1984) On the theory of the Bernoulli polynomials and numbers. J. Math. Anal. Appl. 104 (2), pp. 309–350.
  • 5: 24.3 Graphs
    See accompanying text
    Figure 24.3.1: Bernoulli polynomials B n ( x ) , n = 2 , 3 , , 6 . Magnify
    6: 24.4 Basic Properties
    §24.4(ii) Symmetry
    §24.4(v) Multiplication Formulas
    Raabe’s Theorem
    §24.4(vii) Derivatives
    §24.4(ix) Relations to Other Functions
    7: 24.16 Generalizations
    §24.16 Generalizations
    Bernoulli Numbers of the Second Kind
    Degenerate Bernoulli Numbers
    §24.16(ii) Character Analogs
    §24.16(iii) Other Generalizations
    8: 24.19 Methods of Computation
    §24.19(i) Bernoulli and Euler Numbers and Polynomials
    For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
    §24.19(ii) Values of B n Modulo p
    We list here three methods, arranged in increasing order of efficiency.
  • Tanner and Wagstaff (1987) derives a congruence ( mod p ) for Bernoulli numbers in terms of sums of powers. See also §24.10(iii).

  • 9: 24.14 Sums
    §24.14 Sums
    §24.14(i) Quadratic Recurrence Relations
    24.14.2 k = 0 n ( n k ) B k B n k = ( 1 n ) B n n B n 1 .
    §24.14(ii) Higher-Order Recurrence Relations
    For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
    10: 24.13 Integrals
    §24.13(i) Bernoulli Polynomials
    24.13.4 0 1 / 2 B n ( t ) d t = 1 2 n + 1 2 n B n + 1 n + 1 ,
    24.13.6 0 1 B n ( t ) B m ( t ) d t = ( 1 ) n 1 m ! n ! ( m + n ) ! B m + n .
    For integrals of the form 0 x B n ( t ) B m ( t ) d t and 0 x B n ( t ) B m ( t ) B k ( t ) d t see Agoh and Dilcher (2011). …
    §24.13(iii) Compendia