About the Project

Askey polynomials

AdvancedHelp

(0.004 seconds)

21—30 of 44 matching pages

21: 18.27 q -Hahn Class
18.27.6 P n ( α , β ) ( x ; c , d ; q ) = c n q ( α + 1 ) n ( q α + 1 , q α + 1 c 1 d ; q ) n ( q , q ; q ) n P n ( q α + 1 c 1 x ; q α , q β , q α c 1 d ; q ) ,
18.27.12_5 lim q 1 P n ( α , β ) ( x ; c , d ; q ) = ( c + d 2 ) n P n ( α , β ) ( 2 x c + d c + d ) .
22: 18.14 Inequalities
18.14.25 m = 0 n ( λ + 1 ) n m ( n m ) ! ( λ + 1 ) m m ! P m ( α , β ) ( x ) P m ( β , α ) ( 1 ) 0 , x 1 , α + β λ 0 , β 1 2 , n = 0 , 1 , .
18.14.26 m = 0 n P m ( α , β ) ( x ) P m ( β , α ) ( 1 ) 0 , x 1 , n = 0 , 1 , ,
18.14.27 m = 0 n ( λ + 1 ) n m ( n m ) ! ( λ + 1 ) m m ! ( 1 ) m L m ( β ) ( x ) L m ( β ) ( 0 ) 0 , x 0 ,   β , λ 1 2 ,   n = 0 , 1 , .
23: 18.17 Integrals
The case x = 1 is a limit case of an integral for Jacobi polynomials; see Askey and Razban (1972). …
24: Bibliography T
  • N. M. Temme and J. L. López (2001) The Askey scheme for hypergeometric orthogonal polynomials viewed from asymptotic analysis. J. Comput. Appl. Math. 133 (1-2), pp. 623–633.
  • 25: 18.26 Wilson Class: Continued
    Moreover, if one or more of the new parameters becomes zero, then the polynomial descends to a lower family in the Askey scheme.
    26: 18.7 Interrelations and Limit Relations
    §18.7 Interrelations and Limit Relations
    Chebyshev, Ultraspherical, and Jacobi
    Legendre, Ultraspherical, and Jacobi
    §18.7(ii) Quadratic Transformations
    See Figure 18.21.1 for the Askey schematic representation of most of these limits. …
    27: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • 28: Bibliography M
  • D. R. Masson (1991) Associated Wilson polynomials. Constr. Approx. 7 (4), pp. 521–534.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 29: 18.18 Sums
    §18.18 Sums
    Ultraspherical
    Legendre
    Hermite
    30: 18.20 Hahn Class: Explicit Representations
    §18.20(i) Rodrigues Formulas
    For the Hahn polynomials p n ( x ) = Q n ( x ; α , β , N ) and …For the Krawtchouk, Meixner, and Charlier polynomials, F ( x ) and κ n are as in Table 18.20.1. …
    §18.20(ii) Hypergeometric Function and Generalized Hypergeometric Functions
    (For symmetry properties of p n ( x ; a , b , a ¯ , b ¯ ) with respect to a , b , a ¯ , b ¯ see Andrews et al. (1999, Corollary 3.3.4).) …