About the Project

Appell%0Afunctions

AdvancedHelp

(0.001 seconds)

11—20 of 701 matching pages

11: 16.1 Special Notation
β–ΊThe main functions treated in this chapter are the generalized hypergeometric function F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ) , the Appell (two-variable hypergeometric) functions F 1 ⁑ ( Ξ± ; Ξ² , Ξ² ; Ξ³ ; x , y ) , F 2 ⁑ ( Ξ± ; Ξ² , Ξ² ; Ξ³ , Ξ³ ; x , y ) , F 3 ⁑ ( Ξ± , Ξ± ; Ξ² , Ξ² ; Ξ³ ; x , y ) , F 4 ⁑ ( Ξ± , Ξ² ; Ξ³ , Ξ³ ; x , y ) , and the Meijer G -function G p , q m , n ⁑ ( z ; a 1 , , a p b 1 , , b q ) . Alternative notations are F q p ⁑ ( 𝐚 𝐛 ; z ) , F q p ⁑ ( a 1 , , a p ; b 1 , , b q ; z ) , and F q p ⁑ ( 𝐚 ; 𝐛 ; z ) for the generalized hypergeometric function, F 1 ⁑ ( Ξ± , Ξ² , Ξ² ; Ξ³ ; x , y ) , F 2 ⁑ ( Ξ± , Ξ² , Ξ² ; Ξ³ , Ξ³ ; x , y ) , F 3 ⁑ ( Ξ± , Ξ± , Ξ² , Ξ² ; Ξ³ ; x , y ) , F 4 ⁑ ( Ξ± , Ξ² ; Ξ³ , Ξ³ ; x , y ) , for the Appell functions, and G p , q m , n ⁑ ( z ; 𝐚 ; 𝐛 ) for the Meijer G -function.
12: Bibliography F
β–Ί
  • V. N. Faddeeva and N. M. Terent’ev (1954) Tablicy značeniΔ­ funkcii w ⁒ ( z ) = e z 2 ⁒ ( 1 + 2 ⁒ i Ο€ ⁒ 0 z e t 2 ⁒ 𝑑 t ) ot kompleksnogo argumenta. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (Russian).
  • β–Ί
  • V. N. Faddeyeva and N. M. Terent’ev (1961) Tables of Values of the Function w ⁒ ( z ) = e z 2 ⁒ ( 1 + 2 ⁒ i ⁒ Ο€ 1 / 2 ⁒ 0 z e t 2 ⁒ 𝑑 t ) for Complex Argument. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
  • β–Ί
  • C. Ferreira, J. L. López, and E. Pérez Sinusía (2013a) The third Appell function for one large variable. J. Approx. Theory 165, pp. 60–69.
  • β–Ί
  • C. Ferreira, J. L. López, and E. P. Sinusía (2013b) The second Appell function for one large variable. Mediterr. J. Math. 10 (4), pp. 1853–1865.
  • 13: 19.25 Relations to Other Functions
    β–Ίwith Ξ± 0 . … β–Ί
    §19.25(vii) Hypergeometric Function
    β–ΊFor these results and extensions to the Appell function F 1 16.13) and Lauricella’s function F D see Carlson (1963). ( F 1 and F D are equivalent to the R -function of 3 and n variables, respectively, but lack full symmetry.)
    14: Bibliography
    β–Ί
  • F. S. Acton (1974) Recurrence relations for the Fresnel integral 0 exp ⁑ ( c ⁒ t ) ⁒ d t t ⁒ ( 1 + t 2 ) and similar integrals. Comm. ACM 17 (8), pp. 480–481.
  • β–Ί
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I Ξ½ ⁒ ( x ) and J Ξ½ ⁒ ( x ) , x 0 , Ξ½ 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • β–Ί
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • β–Ί
  • P. Appell and J. Kampé de Fériet (1926) Fonctions hypergéométriques et hypersphériques. Polynomes d’Hermite. Gauthier-Villars, Paris.
  • 15: Bibliography L
    β–Ί
  • L. J. Landau (1999) Ratios of Bessel functions and roots of Ξ± ⁒ J Ξ½ ⁒ ( x ) + x ⁒ J Ξ½ ⁒ ( x ) = 0 . J. Math. Anal. Appl. 240 (1), pp. 174–204.
  • β–Ί
  • M. Lerch (1887) Note sur la fonction π”Ž ⁒ ( w , x , s ) = k = 0 e 2 ⁒ k ⁒ Ο€ ⁒ i ⁒ x ( w + k ) s . Acta Math. 11 (1-4), pp. 19–24 (French).
  • β–Ί
  • E. Levin and D. Lubinsky (2005) Orthogonal polynomials for exponential weights x 2 ⁒ ρ ⁒ e 2 ⁒ Q ⁒ ( x ) on [ 0 , d ) . J. Approx. Theory 134 (2), pp. 199–256.
  • β–Ί
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013a) Asymptotics of the first Appell function F 1 with large parameters II. Integral Transforms Spec. Funct. 24 (12), pp. 982–999.
  • β–Ί
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013b) Asymptotics of the first Appell function F 1 with large parameters. Integral Transforms Spec. Funct. 24 (9), pp. 715–733.
  • 16: Bibliography B
    β–Ί
  • O. Blumenthal (1898) Ueber die Entwickelung einer willkürlichen Function nach den Nennern des Kettenbruches für 0 Ο† ⁒ ( ΞΎ ) ⁒ d ⁒ ΞΎ z ΞΎ .
  • β–Ί
  • J. L. Burchnall and T. W. Chaundy (1940) Expansions of Appell’s double hypergeometric functions. Quart. J. Math., Oxford Ser. 11, pp. 249–270.
  • β–Ί
  • J. L. Burchnall and T. W. Chaundy (1941) Expansions of Appell’s double hypergeometric functions. II. Quart. J. Math., Oxford Ser. 12, pp. 112–128.
  • 17: Bibliography C
    β–Ί
  • B. C. Carlson (1976) Quadratic transformations of Appell functions. SIAM J. Math. Anal. 7 (2), pp. 291–304.
  • β–Ί
  • J. P. Coleman (1980) A Fortran subroutine for the Bessel function J n ⁒ ( x ) of order 0 to 10 . Comput. Phys. Comm. 21 (1), pp. 109–118.
  • 18: Errata
    β–Ί
  • Equation (17.11.2)
    17.11.2 Ξ¦ ( 2 ) ⁑ ( a ; b , b ; c , c ; q ; x , y ) = ( b , a ⁒ x ; q ) ( c , x ; q ) ⁒ n , r ≧ 0 ( a , b ; q ) n ⁒ ( c / b , x ; q ) r ⁒ b r ⁒ y n ( q , c ; q ) n ⁒ ( q ; q ) r ⁒ ( a ⁒ x ; q ) n + r

    The factor ( q ) r originally used in the denominator has been corrected to be ( q ; q ) r .

  • β–Ί
  • Equation (4.8.14)

    The constraint a 0 was added.

  • β–Ί
  • Equation (36.2.18), Subsections §§36.12(i), 36.15(i), 36.15(ii)

    The vector at the origin, previously given as 0 , has been clarified to read 𝟎 .

  • β–Ί
  • Section 17.1

    The notation used for the q -Appell functions in Equations (17.4.5), (17.4.6),(17.4.7), (17.4.8), (17.11.1), (17.11.2) and (17.11.3) was updated to explicitly include the argument q , as used in Gasper and Rahman (2004).

  • β–Ί
  • Equation (24.4.26)

    This equation is true only for n > 0 . Previously, n = 0 was also allowed.

    Reported 2012-05-14 by Vladimir Yurovsky.

  • 19: 33.24 Tables
    β–Ί
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ⁑ ( Ξ· , ρ ) , G 0 ⁑ ( Ξ· , ρ ) , F 0 ⁑ ( Ξ· , ρ ) , and G 0 ⁑ ( Ξ· , ρ ) for Ξ· = 0.5 ⁒ ( .5 ) ⁒ 20 and ρ = 1 ⁒ ( 1 ) ⁒ 20 , 5S; C 0 ⁑ ( Ξ· ) for Ξ· = 0 ⁒ ( .05 ) ⁒ 3 , 6S.

  • β–Ί
  • Curtis (1964a) tabulates P β„“ ⁑ ( Ο΅ , r ) , Q β„“ ⁑ ( Ο΅ , r ) 33.1), and related functions for β„“ = 0 , 1 , 2 and Ο΅ = 2 ⁒ ( .2 ) ⁒ 2 , with x = 0 ⁒ ( .1 ) ⁒ 4 for Ο΅ < 0 and x = 0 ⁒ ( .1 ) ⁒ 10 for Ο΅ 0 ; 6D.

  • 20: 26.15 Permutations: Matrix Notation
    β–ΊThe set 𝔖 n 26.13) can be identified with the set of n × n matrices of 0’s and 1’s with exactly one 1 in each row and column. The permutation Οƒ corresponds to the matrix in which there is a 1 at the intersection of row j with column Οƒ ⁑ ( j ) , and 0’s in all other positions. … β–ΊDefine r 0 ⁑ ( B ) = 1 . … β–ΊThe Ferrers board of shape ( b 1 , b 2 , , b n ) , 0 b 1 b 2 β‹― b n , is the set B = { ( j , k ) | β€…1 j n , 1 k b j } . …If B is the Ferrers board of shape ( 0 , 1 , 2 , , n 1 ) , then …