About the Project

Alanus-Universit?t证书办理【购证 微kaa77788】4YVBYAE

AdvancedHelp

(0.023 seconds)

21—30 of 517 matching pages

21: Ranjan Roy
  • In November 2015, Roy was named Associate Editor for Chapters 1 and 4.
    22: 12.9 Asymptotic Expansions for Large Variable
    12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
    12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
    12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
    12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .
    23: 18.4 Graphics
    See accompanying text
    Figure 18.4.1: Jacobi polynomials P n ( 1.5 , 0.5 ) ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.3: Chebyshev polynomials T n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.6: Laguerre polynomials L 3 ( α ) ( x ) , α = 0 , 1 , 2 , 3 , 4 . Magnify
    24: 30.16 Methods of Computation
    A j , j + 1 = γ 2 ( 2 m + 2 j 1 ) ( 2 m + 2 j ) ( 2 m + 4 j 1 ) ( 2 m + 4 j + 1 ) ,
    For m = 2 , n = 4 , γ 2 = 10 , …
    α 2 , 4 = 13.97907 459 ,
    which yields λ 4 2 ( 10 ) = 13.97907 345 . … The coefficients a n , k m ( γ 2 ) calculated in §30.16(ii) can be used to compute S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 from (30.11.3) as well as the connection coefficients K n m ( γ ) from (30.11.10) and (30.11.11). …
    25: 4.9 Continued Fractions
    4.9.1 ln ( 1 + z ) = z 1 + z 2 + z 3 + 4 z 4 + 4 z 5 + 9 z 6 + 9 z 7 + , | ph ( 1 + z ) | < π .
    4.9.2 ln ( 1 + z 1 z ) = 2 z 1 z 2 3 4 z 2 5 9 z 2 7 16 z 2 9 ,
    = 1 + z 1 ( z / 2 ) + z 2 / ( 4 3 ) 1 + z 2 / ( 4 15 ) 1 + z 2 / ( 4 35 ) 1 + z 2 / ( 4 ( 4 n 2 1 ) ) 1 +
    4.9.4 e z e n 1 ( z ) = z n n ! n ! z ( n + 1 ) + z ( n + 2 ) ( n + 1 ) z ( n + 3 ) + 2 z ( n + 4 ) ( n + 2 ) z ( n + 5 ) + 3 z ( n + 6 ) ,
    26: 10.65 Power Series
    ber ν x = ( 1 2 x ) ν k = 0 cos ( 3 4 ν π + 1 2 k π ) k ! Γ ( ν + k + 1 ) ( 1 4 x 2 ) k ,
    bei ν x = ( 1 2 x ) ν k = 0 sin ( 3 4 ν π + 1 2 k π ) k ! Γ ( ν + k + 1 ) ( 1 4 x 2 ) k .
    ber x = 1 ( 1 4 x 2 ) 2 ( 2 ! ) 2 + ( 1 4 x 2 ) 4 ( 4 ! ) 2 ,
    bei x = 1 4 x 2 ( 1 4 x 2 ) 3 ( 3 ! ) 2 + ( 1 4 x 2 ) 5 ( 5 ! ) 2 .
    ker x = ln ( 1 2 x ) ber x + 1 4 π bei x + k = 0 ( 1 ) k ψ ( 2 k + 1 ) ( ( 2 k ) ! ) 2 ( 1 4 x 2 ) 2 k ,
    27: 12.14 The Function W ( a , x )
    Other expansions, involving cos ( 1 4 x 2 ) and sin ( 1 4 x 2 ) , can be obtained from (12.4.3) to (12.4.6) by replacing a by i a and z by x e π i / 4 ; see Miller (1955, p. 80), and also (12.14.15) and (12.14.16). …
    12.14.13 W ( 0 , ± x ) = 2 5 4 π x ( J 1 4 ( 1 4 x 2 ) J 1 4 ( 1 4 x 2 ) ) ,
    12.14.14 d d x W ( 0 , ± x ) = 2 9 4 x π x ( J 3 4 ( 1 4 x 2 ) ± J 3 4 ( 1 4 x 2 ) ) .
    12.14.20 s 1 ( a , x ) 1 + d 2 1 ! 2 x 2 c 4 2 ! 2 2 x 4 d 6 3 ! 2 3 x 6 + c 8 4 ! 2 4 x 8 + ,
    12.14.29 l ( μ ) 2 1 4 μ 1 2 s = 0 l s μ 4 s ,
    28: 20.13 Physical Applications
    The functions θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , provide periodic solutions of the partial differential equation …with κ = i π / 4 . … with diffusion constant α = π / 4 . …
    20.13.3 g ( z , t ) = π 4 α t exp ( z 2 4 α t )
    In the singular limit τ 0 + , the functions θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , become integral kernels of Feynman path integrals (distribution-valued Green’s functions); see Schulman (1981, pp. 194–195). …
    29: 10.3 Graphics
    See accompanying text
    Figure 10.3.9: J 0 ( x + i y ) , 10 x 10 , 4 y 4 . Magnify 3D Help
    See accompanying text
    Figure 10.3.11: J 1 ( x + i y ) , 10 x 10 , 4 y 4 . Magnify 3D Help
    See accompanying text
    Figure 10.3.13: J 5 ( x + i y ) , 10 x 10 , 4 y 4 . Magnify 3D Help
    See accompanying text
    Figure 10.3.14: H 5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
    See accompanying text
    Figure 10.3.15: J 5.5 ( x + i y ) , 10 x 10 , 4 y 4 . … Magnify 3D Help
    30: 16.14 Partial Differential Equations
    x ( 1 x ) 2 F 4 x 2 2 x y 2 F 4 x y y 2 2 F 4 y 2 + ( γ ( α + β + 1 ) x ) F 4 x ( α + β + 1 ) y F 4 y α β F 4 = 0 ,
    y ( 1 y ) 2 F 4 y 2 2 x y 2 F 4 x y x 2 2 F 4 x 2 + ( γ ( α + β + 1 ) y ) F 4 y ( α + β + 1 ) x F 4 x α β F 4 = 0 .
    16.14.6 G 3 ( α , α ; x , y ) = m , n = 0 Γ ( α + 2 n m ) Γ ( α + 2 m n ) Γ ( α ) Γ ( α ) x m y n m ! n ! , | x | + | y | < 1 4 .
    (The region of convergence | x | + | y | < 1 4 is not quite maximal.) …