About the Project

Airy function

AdvancedHelp

(0.005 seconds)

41—50 of 97 matching pages

41: 32.10 Special Function Solutions
§32.10(ii) Second Painlevé Equation
P II  has solutions expressible in terms of Airy functions9.2) iff …
32.10.5 ϕ ( z ) = C 1 Ai ( 2 1 / 3 z ) + C 2 Bi ( 2 1 / 3 z ) ,
42: 16.18 Special Cases
As a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. …
43: Bibliography G
  • W. Gautschi (2002a) Computation of Bessel and Airy functions and of related Gaussian quadrature formulae. BIT 42 (1), pp. 110–118.
  • A. G. Gibbs (1973) Problem 72-21, Laplace transforms of Airy functions. SIAM Rev. 15 (4), pp. 796–798.
  • A. Gil, J. Segura, and N. M. Temme (2001) On nonoscillating integrals for computing inhomogeneous Airy functions. Math. Comp. 70 (235), pp. 1183–1194.
  • A. Gil, J. Segura, and N. M. Temme (2002c) Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30 (1), pp. 11–23.
  • T. V. Gramtcheff (1981) An application of Airy functions to the Tricomi problem. Math. Nachr. 102 (1), pp. 169–181.
  • 44: 10.20 Uniform Asymptotic Expansions for Large Order
    10.20.4 J ν ( ν z ) ( 4 ζ 1 z 2 ) 1 4 ( Ai ( ν 2 3 ζ ) ν 1 3 k = 0 A k ( ζ ) ν 2 k + Ai ( ν 2 3 ζ ) ν 5 3 k = 0 B k ( ζ ) ν 2 k ) ,
    10.20.5 Y ν ( ν z ) ( 4 ζ 1 z 2 ) 1 4 ( Bi ( ν 2 3 ζ ) ν 1 3 k = 0 A k ( ζ ) ν 2 k + Bi ( ν 2 3 ζ ) ν 5 3 k = 0 B k ( ζ ) ν 2 k ) ,
    10.20.7 J ν ( ν z ) 2 z ( 1 z 2 4 ζ ) 1 4 ( Ai ( ν 2 3 ζ ) ν 4 3 k = 0 C k ( ζ ) ν 2 k + Ai ( ν 2 3 ζ ) ν 2 3 k = 0 D k ( ζ ) ν 2 k ) ,
    10.20.8 Y ν ( ν z ) 2 z ( 1 z 2 4 ζ ) 1 4 ( Bi ( ν 2 3 ζ ) ν 4 3 k = 0 C k ( ζ ) ν 2 k + Bi ( ν 2 3 ζ ) ν 2 3 k = 0 D k ( ζ ) ν 2 k ) ,
    uniformly for z ( 0 , ) in all cases, where Ai and Bi are the Airy functions9.2). …
    45: 18.32 OP’s with Respect to Freud Weights
    For a uniform asymptotic expansion in terms of Airy functions9.2) for the OP’s in the case Q ( x ) = x 4 see Bo and Wong (1999). …
    46: 2.2 Transcendental Equations
    Applications to real and complex zeros of Airy functions are given in Fabijonas and Olver (1999). …
    47: 12.10 Uniform Asymptotic Expansions for Large Parameter
    The turning points can be included if expansions in terms of Airy functions are used instead of elementary functions2.8(iii)). …
    §12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
    Modified Expansions
    §12.10(viii) Negative a , < x < 2 a . Expansions in Terms of Airy Functions
    48: 32.3 Graphics
    32.3.1 w k ( x ) k Ai ( x ) , x + ;
    49: 1.17 Integral and Series Representations of the Dirac Delta
    Airy Functions9.2)
    1.17.16 δ ( x a ) = Ai ( t x ) Ai ( t a ) d t .
    50: Bibliography F
  • B. R. Fabijonas, D. W. Lozier, and F. W. J. Olver (2004) Computation of complex Airy functions and their zeros using asymptotics and the differential equation. ACM Trans. Math. Software 30 (4), pp. 471–490.
  • B. R. Fabijonas (2004) Algorithm 838: Airy functions. ACM Trans. Math. Software 30 (4), pp. 491–501.
  • B. R. Fabijonas and F. W. J. Olver (1999) On the reversion of an asymptotic expansion and the zeros of the Airy functions. SIAM Rev. 41 (4), pp. 762–773.