About the Project

2人斗地主游戏大厅,网上2人斗地主游戏规则,【复制打开网址:33kk55.com】正规博彩平台,在线赌博平台,2人斗地主游戏玩法介绍,真人2人斗地主游戏规则,网上真人棋牌游戏平台,真人博彩游戏平台网址LHBxBZZZAHHQcx0Q

AdvancedHelp

(0.008 seconds)

31—40 of 804 matching pages

31: 30.3 Eigenvalues
With μ = m = 0 , 1 , 2 , , the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) are solutions of Equation (30.2.1) which are bounded on ( 1 , 1 ) , or equivalently, which are of the form ( 1 x 2 ) 1 2 m g ( x ) where g ( z ) is an entire function of z . These solutions exist only for eigenvalues λ n m ( γ 2 ) , n = m , m + 1 , m + 2 , , of the parameter λ . … The eigenvalues λ n m ( γ 2 ) are analytic functions of the real variable γ 2 and satisfy … has the solutions λ = λ m + 2 j m ( γ 2 ) , j = 0 , 1 , 2 , . If p is an odd positive integer, then Equation (30.3.5) has the solutions λ = λ m + 2 j + 1 m ( γ 2 ) , j = 0 , 1 , 2 , . …
32: 29.6 Fourier Series
§29.6(i) Function 𝐸𝑐 ν 2 m ( z , k 2 )
In the special case ν = 2 n , m = 0 , 1 , , n , there is a unique nontrivial solution with the property A 2 p = 0 , p = n + 1 , n + 2 , . …
§29.6(ii) Function 𝐸𝑐 ν 2 m + 1 ( z , k 2 )
§29.6(iii) Function 𝐸𝑠 ν 2 m + 1 ( z , k 2 )
§29.6(iv) Function 𝐸𝑠 ν 2 m + 2 ( z , k 2 )
33: 26.6 Other Lattice Path Numbers
M ( n ) is the number of lattice paths from ( 0 , 0 ) to ( n , n ) that stay on or above the line y = x and are composed of directed line segments of the form ( 2 , 0 ) , ( 0 , 2 ) , or ( 1 , 1 ) . …
26.6.7 n = 0 M ( n ) x n = 1 x 1 2 x 3 x 2 2 x 2 ,
26.6.8 n , k = 1 N ( n , k ) x n y k = 1 x x y ( 1 x x y ) 2 4 x 2 y 2 x ,
26.6.11 M ( n ) = M ( n 1 ) + k = 2 n M ( k 2 ) M ( n k ) , n 2 .
26.6.14 C ( n ) = k = 0 2 n ( 1 ) k ( 2 n k ) M ( 2 n k ) .
34: 29.12 Definitions
The Lamé functions 𝐸𝑐 ν m ( z , k 2 ) , m = 0 , 1 , , ν , and 𝐸𝑠 ν m ( z , k 2 ) , m = 1 , 2 , , ν , are called the Lamé polynomials. …where n = 0 , 1 , 2 , , m = 0 , 1 , 2 , , n . … where ρ , σ , τ are either 0 or 1 2 . The polynomial P ( ξ ) is of degree n and has m zeros (all simple) in ( 0 , 1 ) and n m zeros (all simple) in ( 1 , k 2 ) . … defined for ( t 1 , t 2 , , t n ) with …
35: 34.3 Basic Properties: 3 j Symbol
When any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … Even permutations of columns of a 3 j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example, …
34.3.13 ( ( j 1 + j 2 + j 3 + 1 ) ( j 1 + j 2 + j 3 ) ) 1 2 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( ( j 2 + m 2 ) ( j 3 m 3 ) ) 1 2 ( j 1 j 2 1 2 j 3 1 2 m 1 m 2 1 2 m 3 + 1 2 ) ( ( j 2 m 2 ) ( j 3 + m 3 ) ) 1 2 ( j 1 j 2 1 2 j 3 1 2 m 1 m 2 + 1 2 m 3 1 2 ) ,
34.3.15 ( 2 j 1 + 1 ) ( ( j 2 ( j 2 + 1 ) j 3 ( j 3 + 1 ) ) m 1 j 1 ( j 1 + 1 ) ( m 3 m 2 ) ) ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 1 + 1 ) ( j 1 2 ( j 2 j 3 ) 2 ) 1 2 ( ( j 2 + j 3 + 1 ) 2 j 1 2 ) 1 2 ( j 1 2 m 1 2 ) 1 2 ( j 1 1 j 2 j 3 m 1 m 2 m 3 ) + j 1 ( ( j 1 + 1 ) 2 ( j 2 j 3 ) 2 ) 1 2 ( ( j 2 + j 3 + 1 ) 2 ( j 1 + 1 ) 2 ) 1 2 ( ( j 1 + 1 ) 2 m 1 2 ) 1 2 ( j 1 + 1 j 2 j 3 m 1 m 2 m 3 ) .
36: 28.14 Fourier Series
The coefficients satisfy
28.14.4 q c 2 m + 2 ( a ( ν + 2 m ) 2 ) c 2 m + q c 2 m 2 = 0 , a = λ ν ( q ) , c 2 m = c 2 m ν ( q ) ,
28.14.5 m = ( c 2 m ν ( q ) ) 2 = 1 ;
28.14.7 c 2 m ν ( q ) = c 2 m ν ( q ) ,
28.14.8 c 2 m ν ( q ) = ( 1 ) m c 2 m ν ( q ) .
37: 30.16 Methods of Computation
and real eigenvalues α 1 , d , α 2 , d , , α d , d , arranged in ascending order of magnitude. … For m = 2 , n = 4 , γ 2 = 10 , …which yields λ 4 2 ( 10 ) = 13.97907 345 . … If λ n m ( γ 2 ) is known, then 𝖯𝗌 n m ( x , γ 2 ) can be found by summing (30.8.1). The coefficients a n , r m ( γ 2 ) are computed as the recessive solution of (30.8.4) (§3.6), and normalized via (30.8.5). …
38: 28.4 Fourier Series
For n = 0 , 1 , 2 , 3 , , …
( a 4 m 2 ) B 2 m q ( B 2 m 2 + B 2 m + 2 ) = 0 , m = 2 , 3 , 4 , , a = b 2 n + 2 ( q ) , B 2 m + 2 = B 2 m + 2 2 n + 2 ( q ) .
B 2 n + 2 2 n + 2 ( 0 ) = 1 ,
B 2 m + 2 2 n + 2 ( 0 ) = 0 , n m .
For fixed s = 1 , 2 , 3 , and fixed m = 1 , 2 , 3 , , …
39: 19.3 Graphics
See accompanying text
Figure 19.3.5: Π ( α 2 , k ) as a function of k 2 and α 2 for 2 k 2 < 1 , 2 α 2 2 . … Magnify 3D Help
See accompanying text
Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . Cauchy principal values are shown when sin 2 ϕ > 1 2 . … Magnify 3D Help
See accompanying text
Figure 19.3.7: K ( k ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . … Magnify 3D Help
See accompanying text
Figure 19.3.8: E ( k ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . … Magnify 3D Help
See accompanying text
Figure 19.3.9: ( K ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . … Magnify 3D Help
40: 10.53 Power Series
10.53.1 𝗃 n ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.2 𝗒 n ( z ) = 1 z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + ( 1 ) n + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
For 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) combine (10.47.10), (10.53.1), and (10.53.2). …