About the Project

2%E4%BA%BA%E6%96%97%E5%9C%B0%E4%B8%BB%E6%B8%B8%E6%88%8F%E5%A4%A7%E5%8E%85,%E7%BD%91%E4%B8%8A2%E4%BA%BA%E6%96%97%E5%9C%B0%E4%B8%BB%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E3%80%90%E5%A4%8D%E5%88%B6%E6%89%93%E5%BC%80%E7%BD%91%E5%9D%80%EF%BC%9A33kk55.com%E3%80%91%E6%AD%A3%E8%A7%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E5%9C%A8%E7%BA%BF%E8%B5%8C%E5%8D%9A%E5%B9%B3%E5%8F%B0,2%E4%BA%BA%E6%96%97%E5%9C%B0%E4%B8%BB%E6%B8%B8%E6%88%8F%E7%8E%A9%E6%B3%95%E4%BB%8B%E7%BB%8D,%E7%9C%9F%E4%BA%BA2%E4%BA%BA%E6%96%97%E5%9C%B0%E4%B8%BB%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E7%BD%91%E4%B8%8A%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0,%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0%E7%BD%91%E5%9D%80LHBxBZZZAHHQcx0Q

AdvancedHelp

(0.084 seconds)

11—20 of 869 matching pages

11: 16.24 Physical Applications
§16.24(iii) 3 j , 6 j , and 9 j Symbols
They can be expressed as F 2 3 functions with unit argument. …These are balanced F 3 4 functions with unit argument. Lastly, special cases of the 9 j symbols are F 4 5 functions with unit argument. …
12: 34.7 Basic Properties: 9 j Symbol
§34.7 Basic Properties: 9 j Symbol
§34.7(ii) Symmetry
§34.7(iv) Orthogonality
§34.7(vi) Sums
It constitutes an addition theorem for the 9 j symbol. …
13: 34.10 Zeros
In a 3 j symbol, if the three angular momenta j 1 , j 2 , j 3 do not satisfy the triangle conditions (34.2.1), or if the projective quantum numbers do not satisfy (34.2.3), then the 3 j symbol is zero. …Such zeros are called nontrivial zeros. For further information, including examples of nontrivial zeros and extensions to 9 j symbols, see Srinivasa Rao and Rajeswari (1993, pp. 133–215, 294–295, 299–310).
14: 34.1 Special Notation
2 j 1 , 2 j 2 , 2 j 3 , 2 l 1 , 2 l 2 , 2 l 3 nonnegative integers.
The main functions treated in this chapter are the Wigner 3 j , 6 j , 9 j symbols, respectively, … An often used alternative to the 3 j symbol is the Clebsch–Gordan coefficient …For other notations for 3 j , 6 j , 9 j symbols, see Edmonds (1974, pp. 52, 97, 104–105) and Varshalovich et al. (1988, §§8.11, 9.10, 10.10).
15: 34.13 Methods of Computation
Methods of computation for 3 j and 6 j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 9799); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). For 9 j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). …
16: 16.26 Approximations
For discussions of the approximation of generalized hypergeometric functions and the Meijer G -function in terms of polynomials, rational functions, and Chebyshev polynomials see Luke (1975, §§5.12 - 5.13) and Luke (1977b, Chapters 1 and 9).
17: 34.9 Graphical Method
§34.9 Graphical Method
For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
18: 9.4 Maclaurin Series
9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
19: 19.36 Methods of Computation
All cases of R F , R C , R J , and R D are computed by essentially the same procedure (after transforming Cauchy principal values by means of (19.20.14) and (19.2.20)). … The incomplete integrals R F ( x , y , z ) and R G ( x , y , z ) can be computed by successive transformations in which two of the three variables converge quadratically to a common value and the integrals reduce to R C , accompanied by two quadratically convergent series in the case of R G ; compare Carlson (1965, §§5,6). … If x , y , and z are permuted so that 0 x < y < z , then the computation of R F ( x , y , z ) is fastest if we make c 0 2 a 0 2 / 2 by choosing θ = 1 when y < ( x + z ) / 2 or θ = 1 when y ( x + z ) / 2 . … Here R C is computed either by the duplication algorithm in Carlson (1995) or via (19.2.19). … When the values of complete integrals are known, addition theorems with ψ = π / 2 19.11(ii)) ease the computation of functions such as F ( ϕ , k ) when 1 2 π ϕ is small and positive. …
20: 16.7 Relations to Other Functions
For 3 j , 6 j , 9 j symbols see Chapter 34. Further representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).