About the Project

.94世界杯马拉多纳_『wn4.com_』2014年世界杯德国vs阿根廷_w6n2c9o_2022年11月30日9时23分57秒_yo6cq20ae

AdvancedHelp

(0.005 seconds)

21—30 of 785 matching pages

21: 3.4 Differentiation
The B k n are the differentiated Lagrangian interpolation coefficients: … where ξ 0 and ξ 1 I . For the values of n 0 and n 1 used in the formulas below … For partial derivatives we use the notation u t , s = u ( x 0 + t h , y 0 + s h ) . …
22: 8.26 Tables
  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.

  • Pearson (1968) tabulates I x ( a , b ) for x = 0.01 ( .01 ) 1 , a , b = 0.5 ( .5 ) 11 ( 1 ) 50 , with b a , to 7D.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 23: 21.1 Special Notation
    g , h positive integers.
    a j j th element of vector 𝐚 .
    diag 𝐀 Transpose of [ A 11 , A 22 , , A g g ] .
    𝐉 2 g [ 𝟎 g 𝐈 g 𝐈 g 𝟎 g ] .
    S 1 S 2 set of all elements of the form “ element of  S 1 × element of  S 2 ”.
    S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
    24: 3.8 Nonlinear Equations
    The choice of x 0 here is critical. … Let x 0 and x 1 be such that f 0 = f ( x 0 ) and f 1 = f ( x 1 ) have opposite signs. …We continue with x 2 and either x 0 or x 1 , depending which of f 0 and f 1 is of opposite sign to f ( x 2 ) , and so on. … Whether or not f 0 and f 1 have opposite signs, x 2 is computed as in (3.8.6). … We construct sequences q j and r j , j = n + 1 , n , , 0 , from q n + 1 = r n + 1 = 0 , q n = r n = a n , and for j n 1 , …
    25: 28.6 Expansions for Small q
    Leading terms of the power series for a m ( q ) and b m ( q ) for m 6 are: … The coefficients of the power series of a 2 n ( q ) , b 2 n ( q ) and also a 2 n + 1 ( q ) , b 2 n + 1 ( q ) are the same until the terms in q 2 n 2 and q 2 n , respectively. … Numerical values of the radii of convergence ρ n ( j ) of the power series (28.6.1)–(28.6.14) for n = 0 , 1 , , 9 are given in Table 28.6.1. Here j = 1 for a 2 n ( q ) , j = 2 for b 2 n + 2 ( q ) , and j = 3 for a 2 n + 1 ( q ) and b 2 n + 1 ( q ) . …
    §28.6(ii) Functions ce n and se n
    26: 24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. … For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
    27: 3.5 Quadrature
    Using (3.5.10) with h = 30 / 4 = 7.5 we obtain G 7 ( h ) with 14 correct digits. … The nodes x 1 , x 2 , , x n are prescribed, and the weights w k and error term E n ( f ) are found by integrating the product of the Lagrange interpolation polynomial of degree n 1 and w ( x ) . … The nodes x k and weights w k are known explicitly: … Let 𝐯 k denote the normalized eigenvector of 𝐉 n corresponding to the eigenvalue x k . … The monic version p n ( x ) and orthonormal version q n ( x ) of a classical orthogonal polynomial are obtained by dividing the orthogonal polynomial by k n respectively h n , with k n and h n as in Table 18.3.1. …
    28: 24.19 Methods of Computation
    Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …For example, the tangent numbers T n can be generated by simple recurrence relations obtained from (24.15.3), then (24.15.4) is applied. … If N ~ 2 n denotes the right-hand side of (24.19.1) but with the second product taken only for p ( π e ) 1 2 n + 1 , then N 2 n = N ~ 2 n for n 2 . … For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
    §24.19(ii) Values of B n Modulo p
    29: 11.14 Tables
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ( x ) , 𝐇 n ( x ) Y n ( x ) , and I n ( x ) 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .1 ) 5 , x 1 = 0 ( .01 ) 0.2 to 6D or 7D.

  • Agrest et al. (1982) tabulates 𝐇 n ( x ) and e x 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t and ( 2 / π ) x t 1 𝐇 0 ( t ) d t for x = 0 ( .1 ) 5 to 5D or 7D; 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t ( 2 / π ) ln x , 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t ( 2 / π ) ln x , and x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t for x 1 = 0 ( .01 ) 0.2 to 6D.

  • Agrest et al. (1982) tabulates 0 x 𝐇 0 ( t ) d t and e x 0 x 𝐋 0 ( t ) d t for x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function 𝐇 n ( x , α ) for n = 0 , 1 , x = 0 ( .2 ) 10 , and α = 0 ( .2 ) 1.4 , 1 2 π , together with surface plots.

  • 30: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Harvard University (1945) tabulates the real and imaginary parts of h 1 ( z ) , h 1 ( z ) , h 2 ( z ) , h 2 ( z ) for x 0 z x 0 , 0 z y 0 , | x 0 + i y 0 | < 6.1 , with interval 0.1 in z and z . Precision is 8D. Here h 1 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) , h 2 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) .

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.