About the Project

.新宝2世界杯结束『世界杯佣金分红55%,咨询专员:@ky975』.tbx-k2q1w9-2022年11月29日4时59分17秒

AdvancedHelp

(0.005 seconds)

21—30 of 820 matching pages

21: 6.14 Integrals
6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
6.14.6 0 Ci 2 ( t ) d t = 0 si 2 ( t ) d t = 1 2 π ,
6.14.7 0 Ci ( t ) si ( t ) d t = ln 2 .
For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
22: 25.6 Integer Arguments
ζ ( 2 ) = π 2 6 ,
With c defined by (25.4.6) and n = 1 , 2 , 3 , , …
25.6.16 ( n + 1 2 ) ζ ( 2 n ) = k = 1 n 1 ζ ( 2 k ) ζ ( 2 n 2 k ) , n 2 .
25.6.19 ( m + n + 3 2 ) ζ ( 2 m + 2 n + 2 ) = ( k = 1 m + k = 1 n ) ζ ( 2 k ) ζ ( 2 m + 2 n + 2 2 k ) , m 0 , n 0 , m + n 1 .
25.6.20 1 2 ( 2 2 n 1 ) ζ ( 2 n ) = k = 1 n 1 ( 2 2 n 2 k 1 ) ζ ( 2 n 2 k ) ζ ( 2 k ) , n 2 .
23: 12.9 Asymptotic Expansions for Large Variable
12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .
See also Temme (2015, Chapter 11). …
24: 30.7 Graphics
See accompanying text
Figure 30.7.4: Eigenvalues λ n 10 ( γ 2 ) , n = 10 , 11 , 12 , 13 , 50 γ 2 150 . Magnify
See accompanying text
Figure 30.7.16: | 𝑃𝑠 0 0 ( x + i y , 4 ) | , 2 x 2 , 2 y 2 . Magnify 3D Help
See accompanying text
Figure 30.7.17: | 𝑃𝑠 0 0 ( x + i y , 4 ) | , 2 x 2 , 2 y 2 . Magnify 3D Help
See accompanying text
Figure 30.7.18: | 𝑃𝑠 1 1 ( x + i y , 4 ) | , 2 x 2 , 2 y 2 . Magnify 3D Help
See accompanying text
Figure 30.7.19: | 𝑃𝑠 1 1 ( x + i y , 4 ) | , 2 x 2 , 2 y 2 . Magnify 3D Help
25: 26.13 Permutations: Cycle Notation
An explicit representation of σ can be given by the 2 × n matrix: … An element of 𝔖 n with a 1 fixed points, a 2 cycles of length 2 , , a n cycles of length n , where n = a 1 + 2 a 2 + + n a n , is said to have cycle type ( a 1 , a 2 , , a n ) . … For the example (26.13.2), this decomposition is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 1 , 3 ) ( 2 , 3 ) ( 2 , 5 ) ( 5 , 7 ) ( 6 , 8 ) . If j < k , then ( j , k ) is a product of 2 k 2 j 1 adjacent transpositions: …Again, for the example (26.13.2) a minimal decomposition into adjacent transpositions is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 2 , 3 ) ( 1 , 2 ) ( 4 , 5 ) ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 4 , 5 ) ( 6 , 7 ) ( 5 , 6 ) ( 7 , 8 ) ( 6 , 7 ) : inv ( ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) ) = 11 .
26: 10.60 Sums
10.60.11 n = 0 𝗃 n 2 ( z ) = Si ( 2 z ) 2 z .
10.60.12 n = 0 ( 2 n + 1 ) 𝗃 n 2 ( z ) = 1 ,
10.60.13 n = 0 ( 1 ) n ( 2 n + 1 ) 𝗃 n 2 ( z ) = sin ( 2 z ) 2 z ,
For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000). … See also Watson (1944, Chapters 11 and 16).
27: 33.19 Power-Series Expansions in r
α 0 = 2 + 1 / ( 2 + 1 ) ! ,
k ( k + 2 + 1 ) α k + 2 α k 1 + ϵ α k 2 = 0 , k = 2 , 3 , .
δ 0 = ( β 2 + 1 2 ( ψ ( 2 + 2 ) + ψ ( 1 ) ) A ( ϵ , ) ) α 0 ,
δ 1 = ( β 2 + 2 2 ( ψ ( 2 + 3 ) + ψ ( 2 ) ) A ( ϵ , ) ) α 1 ,
33.19.6 k ( k + 2 + 1 ) δ k + 2 δ k 1 + ϵ δ k 2 + 2 ( 2 k + 2 + 1 ) A ( ϵ , ) α k = 0 , k = 2 , 3 , ,
28: 19.14 Reduction of General Elliptic Integrals
In (19.14.4) 0 y < x , each quadratic polynomial is positive on the interval ( y , x ) , and α , β , γ is a permutation of 0 , a 1 b 2 , a 2 b 1 (not all 0 by assumption) such that α β γ . … If a 1 + b 1 y 2 = 0 , then …If a 1 + b 1 x 2 = 0 , then … The classical method of reducing (19.2.3) to Legendre’s integrals is described in many places, especially Erdélyi et al. (1953b, §13.5), Abramowitz and Stegun (1964, Chapter 17), and Labahn and Mutrie (1997, §3). …If no such branch point is accessible from the interval of integration (for example, if the integrand is ( t ( 3 t ) ( 4 t ) ) 3 / 2 and the interval is [1,2]), then no method using this assumption succeeds. …
29: 24.13 Integrals
For m , n = 1 , 2 , , …
24.13.9 0 1 / 2 E 2 n ( t ) d t = E 2 n + 1 ( 0 ) 2 n + 1 = 2 ( 2 2 n + 2 1 ) B 2 n + 2 ( 2 n + 1 ) ( 2 n + 2 ) ,
24.13.10 0 1 / 2 E 2 n 1 ( t ) d t = E 2 n n 2 2 n + 1 , n = 1 , 2 , .
For m , n = 1 , 2 , , … For other integrals see Prudnikov et al. (1990, pp. 55–57).
30: 12.14 The Function W ( a , x )
Here w 1 ( a , x ) and w 2 ( a , x ) are the even and odd solutions of (12.2.3): … with ϕ 2 given by (12.14.7). …The coefficients c 2 r and d 2 r are obtainable by equating real and imaginary parts in … follows from (12.2.3), and has solutions W ( 1 2 μ 2 , ± μ t 2 ) . …
Positive a , 2 a < x < 2 a