About the Project

.世界杯决赛的时间_『网址:687.vii』日本2014年世界杯成绩_b5p6v3_2022年11月29日5时20分49秒_ewk244wui

AdvancedHelp

(0.003 seconds)

21—30 of 235 matching pages

21: 26.8 Set Partitions: Stirling Numbers
§26.8(vii) Asymptotic Approximations
26.8.41 s ( n + k , k ) ( 1 ) n 2 n n ! k 2 n , k ,
26.8.43 S ( n + k , k ) k 2 n 2 n n ! , k ,
22: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • S. M. Candel (1981) An algorithm for the Fourier-Bessel transform. Comput. Phys. Comm. 23 (4), pp. 343–353.
  • B. C. Carlson (2011) Permutation symmetry for theta functions. J. Math. Anal. Appl. 378 (1), pp. 42–48.
  • N. B. Christensen (1990) Optimized fast Hankel transform filters. Geophysical Prospecting 38 (5), pp. 545–568.
  • P. Cornille (1972) Computation of Hankel transforms. SIAM Rev. 14 (2), pp. 278–285.
  • 23: 9.18 Tables
  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.

  • §9.18(vii) Generalized Airy Functions
    24: Bibliography H
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • G. H. Hardy (1952) A Course of Pure Mathematics. 10th edition, Cambridge University Press.
  • P. Henrici (1974) Applied and Computational Complex Analysis. Vol. 1: Power Series—Integration—Conformal Mapping—Location of Zeros. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • J. Humblet (1984) Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Physics 155 (2), pp. 461–493.
  • 25: 13.14 Definitions and Basic Properties
    §13.14(vii) Connection Formulas
    13.14.31 W κ , μ ( z ) = W κ , μ ( z ) .
    13.14.32 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = e ± ( κ μ 1 2 ) π i Γ ( 1 2 + μ + κ ) W κ , μ ( z ) + e ± κ π i Γ ( 1 2 + μ κ ) W κ , μ ( e ± π i z ) .
    13.14.33 W κ , μ ( z ) = Γ ( 2 μ ) Γ ( 1 2 μ κ ) M κ , μ ( z ) + Γ ( 2 μ ) Γ ( 1 2 + μ κ ) M κ , μ ( z ) .
    26: 10.21 Zeros
    §10.21(vii) Asymptotic Expansions for Large Order
    10.21.24 θ ( 2 1 3 α ) = π t ,
    (There is an inaccuracy in Figures 11 and 14 in this reference. … This information includes asymptotic approximations analogous to those given in §§10.21(vi), 10.21(vii), and 10.21(x). …
    27: 7.25 Software
    §7.25(vii) ( z ) , G ( z ) , z
    28: 8.28 Software
    §8.28(vii) Generalized Exponential Integral for Complex Argument and/or Parameter
    29: 3.2 Linear Algebra
    3.2.2 [ a 11 a 1 n b 1 a n 1 a n n b n ] .
    3.2.3 [ u 11 u 12 u 1 n y 1 0 u 22 u 2 n y 2 0 0 u n n y n ] .
    §3.2(vii) Computation of Eigenvalues
    30: 20.7 Identities
    The symmetry, applicable also to §§20.7(iii) and 20.7(vii), is obtained by modifying traditional theta functions in the manner recommended by Carlson (2011) and used for further purposes by Fukushima (2012). …
    §20.7(vii) Derivatives of Ratios of Theta Functions
    20.7.25 d d z ( θ 2 ( z | τ ) θ 4 ( z | τ ) ) = θ 3 2 ( 0 | τ ) θ 1 ( z | τ ) θ 3 ( z | τ ) θ 4 2 ( z | τ ) .